| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 2 / 2
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Efficient encoding and decoding of voxelized models for machine learning-based applications
Damjan Strnad, Štefan Kohek, Borut Žalik, Libor Váša, Andrej Nerat, 2025, izvirni znanstveni članek

Opis: Point clouds have become a popular training data for many practical applications of machine learning in the fields of environmental modeling and precision agriculture. In order to reduce high space requirements and the effect of noise in the data, point clouds are often transformed to a structured representation such as a voxel grid. Storing, transmitting and consuming voxelized geometry, however, remains a challenging problem for machine learning pipelines running on devices with limited amount of on-chip memory with low access latency. A viable solution is to store the data in a compact encoded format, and perform on-the-fly decoding when it is needed for processing. Such on-demand expansion must be fast in order to avoid introducing substantial additional delay to the pipeline. This can be achieved by parallel decoding, which is particularly suitable for massively parallel architecture of GPUs on which the majority of machine learning is currently executed. In this paper, we present such method for efficient and parallelizable encoding/decoding of voxelized geometry. The method employs multi-level context-aware prediction of voxel occupancy based on the extracted binary feature prediction table, and encodes the residual grid with a pointerless sparse voxel octree (PSVO). We particularly focused on encoding the datasets of voxelized trees, obtained from both synthetic tree models and LiDAR point clouds of real trees. The method achieved 15.6% and 12.8% reduction of storage size with respect to plain PSVO on synthetic and real dataset, respectively. We also tested the method on a general set of diverse voxelized objects, where an average 11% improvement of storage space was achieved.
Ključne besede: voxel grid, feature prediction, tree models, prediction-based encoding, key voxels, residuals, sparse voxel octree
Objavljeno v DKUM: 09.01.2025; Ogledov: 0; Prenosov: 5
.pdf Celotno besedilo (20,93 MB)

2.
Extending the protection ability and life cycle of medical masks through the washing process
Julija Volmajer Valh, Tanja Pušić, Mirjana Čurlin, Ana Knežević, 2023, izvirni znanstveni članek

Opis: The reuse of decontaminated disposable medical face masks can contribute to reducing the environmental burden of discarded masks. This research is focused on the effect of household and laboratory washing at 50 °C on the quality and functionality of the nonwoven structure of polypropylene medical masks by varying the washing procedure, bath composition, disinfectant agent, and number of washing cycles as a basis for reusability. The barrier properties of the medical mask were analyzed before and after the first and fifth washing cycle indirectly by measuring the contact angle of the liquid droplets with the front and back surface of the mask, further by measuring air permeability and determining antimicrobial resistance. Additional analysis included FTIR, pH of the material surface and aqueous extract, as well as the determination of residual substances—surfactants—in the aqueous extract of washed versus unwashed medical masks, while their aesthetic aspect was examined by measuring their spectral characteristics. The results showed that household washing had a stronger impact on the change of some functional properties, primarily air permeability, than laboratory washing. The addition of the disinfectant agent, didecyldimethylammonium chloride, contributes to the protective ability and supports the idea that washing of medical masks under controlled conditions can preserve barrier properties and enable reusability.
Ključne besede: medical masks, washing, detergent, didecyldimethylammonium chloride, air permeability, antimicrobial activity, residuals
Objavljeno v DKUM: 15.03.2024; Ogledov: 333; Prenosov: 30
.pdf Celotno besedilo (3,67 MB)
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.04 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici