1.
Uporaba genetskih algoritmov pri napovedovanju pretovora v Luki Koper, d.d.Karmen Balantič, 2017, magistrsko delo/naloga
Opis: Za učinkovito planiranje in sprejemanje pravih odločitev morajo danes podjetja znati predvideti stanje v prihodnosti, zato so metode za napovedovanje nepogrešljive, hkrati pa hitro se spreminjajoče politično in gospodarsko okolje vpliva na to, da osnovne metode za napovedovanje niso več dovolj. Zato smo v magistrskem delu poskušali preučiti genetske algoritme in njihovo uporabnost pri napovedovanju pretovora v Luki Koper, d. d. Izdelali smo dva avtoregresijska integrirana modela drsečih sredin s pojasnjevalnimi spremenljivkami (modela ARIMAX) za napovedovanje pretovora kontejnerjev in napovedovanje razsutega tovora. Pojasnjevalne spremenljivke so nam predstavljali različni makroekonomski kazalniki (bruto domači proizvod, uvoz/izvoz, stopnja brezposelnosti ter pariteta kupnih moči), ki vplivajo na pretovor v Luki Koper. Uporabnost genetskih algoritmov smo v modelu preizkusili dvakrat, prvič za izbiro primernih makroekonomskih kazalnikov kot vhodov ARIMAX modela, kjer smo genetske algoritme združili z regresijo delnih najmanjših kavdratov, ter drugič za izbiro najprimernejšega ARIMAX modela. Dobljena modela sta ustrezala vsem pogojem za stabilnost in ustreznost modela ter dokaj dobro zajela dinamiko časovnih vrst, zaradi česar lahko primernost uporabne genetskih algoritmom pri napovedovanju pretovora potrdimo.
Ključne besede: genetski algoritmi, model ARIMAX, regresija delnih najmanjših kvadratov, napovedovanje pretovora, makroekonomski kazalniki
Objavljeno v DKUM: 05.06.2017; Ogledov: 1580; Prenosov: 202
Celotno besedilo (4,22 MB)