| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 6 / 6
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Recent advances in ejector-enhanced vapor compression heat pump and refrigeration systems : a review
Sven Gruber, Klemen Rola, Danijela Urbancl, Darko Goričanec, 2024, izvirni znanstveni članek

Opis: The incorporation of ejectors into heat pump and refrigeration cycles has been the subject of growing interest, largely due to their simple structure, high reliability, and cost-effectiveness. This paper investigates the recent advancements in novel design concepts of ejector-enhanced vapor compression heat pump and refrigeration cycles. An overview of novel single-stage and twostage compression cycles utilizing a single or multiple ejectors is provided. First, the system setup, operational principles, description, and figures of the existing schemes are provided. Second, the main results, such as the coefficient of performance (COP), volumetric heating capacity and exergy destruction, are discussed. In conclusion, the paper presents a coherent summary of the current developments, future prospects, and the current knowledge gap. A plethora of research is present in developing theoretical systems with high efficiency. However, experimental tests for real-life implementations are limited. This review aims to provide the reader with an overview of recent theoretical and experimental studies.
Ključne besede: ejector, heat pump, refrigeration, vapor compression system, review
Objavljeno v DKUM: 03.09.2024; Ogledov: 51; Prenosov: 6
.pdf Celotno besedilo (10,04 MB)

2.
Production of artificial cold for industry, based on the magnetocaloric effect
Dorin Botoc, Ionut-Bogdan Rusu, Adrian Plesca, Jurij Avsec, 2020, izvirni znanstveni članek

Opis: The most common current technology for producing artificial cold is based on the operation of gas compression and absorption, which was discovered more than a century ago. This technology uses refrigerants as a heat transfer agent. Magnetic refrigeration is an innovative technology that works based on the magnetocaloric effect and the properties of certain rare materials/metals. The present paper describes a simulation of the magnetocaloric effect (MCE) of a gadolinium plate (Gd.), which is the main component of the active magnetic regenerator (AMR). The first part includes a description and history of the discovery of the magnetocaloric effect of materials that possess such properties. The continuation is a COMSOL Multiphysics modelling of AMR's main component: a gadolinium (Gd) plate. The simulation of the magnetocaloric effects and the heat dispersion on its surface was done in COMSOL, as was the highlighting of the adiabatic temperature on the flat surface of the plate. Water was used as a heat transfer agent, and gadolinium (Gd) was used as a reference criterion for the materials. The model simulates a single step of the magnetic refrigeration cycle and evaluates the AMR's performance with a single board. This study enables identifying the most important characteristics that influence the active magnetic regenerator's thermal behaviour.
Ključne besede: energy efficiency, magnetocaloric material, magnetic refrigeration, active magnetic regenerator
Objavljeno v DKUM: 04.12.2023; Ogledov: 284; Prenosov: 5
.pdf Celotno besedilo (2,53 MB)
Gradivo ima več datotek! Več...

3.
Modelling of magnetic regenerator and heat transfer agent in microchannels
Dorin Botoc, Bianca Eliza Oneata, Rusu Ionut, Alexandru Salceanu, Jurij Avsec, 2021, izvirni znanstveni članek

Opis: In this article, a brief introduction of conventional refrigeration is given, followed by a description and history of magnetic refrigeration. The active magnetic regenerator comprises 12 parallel plates of magnetocaloric material (gadolinium (Gd)), through which circulates the heat transfer fluid (water, in this case). At both ends of the regenerator are the heat exchangers. The hot heat exchanger (HHEX) and the cold heat exchanger (CHEX) connects the fluid to the heat sources. The principle of operation of a magnetic refrigeration installation is based on exploiting the magnetocaloric effect from the materials that possess these properties (in this case, Gd).
Ključne besede: magnetic refrigeration, active magnetic regenerator, magnetocaloric material
Objavljeno v DKUM: 10.11.2023; Ogledov: 360; Prenosov: 4
.pdf Celotno besedilo (2,11 MB)
Gradivo ima več datotek! Več...

4.
Long-term performance of central heat pumps in Slovenian homes
Milan Marčič, 2004, izvirni znanstveni članek

Opis: Due to limited availability of natural resources exploited for heating and in order to reduce the environmental impact, people should strive to use renewable energy sources. Heat pumps allow the conversion of ambient heat, available in almost unlimited quantities, to heating energy. The paper describes an energy-saving house provided with good thermal insulation and heated by an air-to-water split-type heat pump. The condenser is located in the attic and the evaporator in the boiler room of the house. The house heating up to the ambient temperature of 0 °C was provided by an air-to-water heat pump and a condensing oil heating furnace if the ambient temperature dropped to below 0 °C. The results of the nine-year testing showed that the heat pump was used during most of the heating season. The average coefficient of performance (COP) of the air-to-water heat pump in nine heating seasons was3.16, indicating that over 68% of the heat was obtained from the ambient air. The comparison between COP of air-to-water heat pumps in energy-saving house and of water-to-water heat pumps fitted in houses dealt with under otherprojects indicates that water-to-water heat pumps have higher COPs. The heat pumps obtain heat from groundwater, hence they are capable of operating throughout the heating season, and possess the highest COP. The advantage of an air-to-water heat pump, however, lies in its simple design and a wide rangeof applications. Due to limited availability of natural resources exploited for heating and in order to reduce the environmental impact, people should strive to use renewable energy sources. Heat pumps allow the conversionof ambient heat, available in almost unlimited quantities, to heating energy. The paper describes an energy-saving house provided with good thermal insulation and heated by an air-to-water split-type heat pump. The condenser is located in the attic and the evaporator in the boiler room of thehouse. The house heating up to the ambient temperature of 0 °C was providedby an air-to-water heat pump and a condensing oil heating furnace if the ambient temperature dropped to below 0 °C. The results of the nine-year testing showed that the heat pump was used during most of the heating season. The average coefficient of performance (COP) of the air-to-water heat pump in nine heating seasons was 3.16, indicating that over 68% of the heat was obtained from the ambient air. The comparison between COP of air-to-water heatpumps in energy-saving house and of water-to-water heat pumps fitted in houses dealt with under other projects indicates that water-to-water heat pumps have higher COPs. The heat pumps obtain heat from groundwater, hence they are capable of operating throughout the heating season, and possess the highest COP. The advantage of an air-to-water heat pump, however, lies in its simple design and a wide range of applications. In comparison to the furnace, the heat pump yielded considerable saving in fuel and monry, which justifies its home heating application in the Central European climatic area. The analys
Ključne besede: heating, energy saving houses, heat pumps, therodynamics, refrigeration
Objavljeno v DKUM: 01.06.2012; Ogledov: 2320; Prenosov: 119
URL Povezava na celotno besedilo

5.
Comparison of the performances of absorption refrigeration cycles
Zvonimir Črepinšek, Darko Goričanec, Jurij Krope, 2009, izvirni znanstveni članek

Opis: This paper compares the performance of absorption refrigeration cycles that are used for refrigeration temperatures below 0°C. Since the most common vapor absorption refrigeration systems use ammonia-water solution with ammonia as the refrigerant and water as the absorbent, research has been devoted to improvement of the performance of ammonia-water absorption refrigeration systems in recent years. In this paper the performances of the ammonia-water and possible alternative cycles as ammonia-lithium nitrate, ammonia-sodium thiocyanate, monomethylamine-water, R22-DMEU, R32-DMEU, R124-DMEU, R152a-DMEU,R125-DMEU, R134a-DMEU, trifluoroethanol (TFE)-tetraethylenglycol dimethylether (TEGDME), methanol-TEGDME and R134a-DMAC are compared in respect of the coefficient of performance (COP) and circulation ratio (f). The highest COP and the lowest f, were found as a function of the generator, condenser, absorber and evaporating temperature.
Ključne besede: absorption, refrigeration, working fluids, COP, circulation ratio, waste heat
Objavljeno v DKUM: 31.05.2012; Ogledov: 2725; Prenosov: 39
URL Povezava na celotno besedilo

6.
Non-destructive method for inward leakage detection of a plate evaporator
Aleš Hribernik, 2007, izvirni znanstveni članek

Opis: A new non-destructive method was developed for the detection of refrigerant leakage at an evaporator`s inflow. Nitrogen and oxygen gas were successively blown through the evaporator. A gas analyser was applied at the outflow of the evaporator and the oxygen concentration measured. It was possible to detect any leakage by investigating the oxygen concentration-time history diagram.
Ključne besede: refrigeration, refrigerant leakage, plate evaporator, measurements, non-destructive method
Objavljeno v DKUM: 31.05.2012; Ogledov: 1892; Prenosov: 89
URL Povezava na celotno besedilo

Iskanje izvedeno v 0.14 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici