| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 2 / 2
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Evolutionary games on multilayer networks : a colloquium
Zhen Wang, Lin Wang, Attila Szolnoki, Matjaž Perc, 2015, pregledni znanstveni članek

Opis: Networks form the backbone of many complex systems, ranging from the Internet to human societies. Accordingly, not only is the range of our interactions limited and thus best described and modeled by networks, it is also a fact that the networks that are an integral part of such models are often interdependent or even interconnected. Networks of networks or multilayer networks are therefore a more apt description of social systems. This colloquium is devoted to evolutionary games on multilayer networks, and in particular to the evolution of cooperation as one of the main pillars of modern human societies. We first give an overview of the most significant conceptual differences between single-layer and multilayer networks, and we provide basic definitions and a classification of the most commonly used terms. Subsequently, we review fascinating and counterintuitive evolutionary outcomes that emerge due to different types of interdependencies between otherwise independent populations. The focus is on coupling through the utilities of players, through the flow of information, as well as through the popularity of different strategies on different network layers. The colloquium highlights the importance of pattern formation and collective behavior for the promotion of cooperation under adverse conditions, as well as the synergies between network science and evolutionary game theory.
Ključne besede: kooperacija, sociološke mreže, evolucijske igre, kolektivni pojav, samo-organizacija, fazni prehodi, recipročnost, fizika socioloških sistemov, cooperation, social networks, evolutionary games, collective phenomena, self-organization, phase transitions, reciprocity, physics of social systems
Objavljeno v DKUM: 17.09.2024; Ogledov: 0; Prenosov: 1
URL Povezava na celotno besedilo

2.
Optimal distribution of incentives for public cooperation in heterogeneous interaction environments
Xiaojie Chen, Matjaž Perc, 2014, izvirni znanstveni članek

Opis: In the framework of evolutionary games with institutional reciprocity, limited incentives are at disposal for rewarding cooperators and punishing defectors. In the simplest case, it can be assumed that, depending on their strategies, all players receive equal incentives from the common pool. The question arises, however, what is the optimal distribution of institutional incentives? How should we best reward and punish individuals for cooperation to thrive? We study this problem for the public goods game on a scale-free network. We show that if the synergetic effects of group interactions are weak, the level of cooperation in the population can be maximized simply by adopting the simplest "equal distribution" scheme. If synergetic effects are strong, however, it is best to reward high-degree nodes more than low-degree nodes. These distribution schemes for institutional rewards are independent of payoff normalization. For institutional punishment, however, the same optimization problem is more complex, and its solution depends on whether absolute or degree-normalized payoffs are used. We find that degree-normalized payoffs require high-degree nodes be punished more lenient than low-degree nodes. Conversely, if absolute payoffs count, then high-degree nodes should be punished stronger than low-degree nodes.
Ključne besede: public cooperation, institutional reciprocity, scale-free network, punishment, reward
Objavljeno v DKUM: 10.07.2017; Ogledov: 1552; Prenosov: 419
.pdf Celotno besedilo (3,26 MB)
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.06 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici