| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju


1 - 3 / 3
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
Particle formation using supercritical fluids
Željko Knez, 2006, pregledni znanstveni članek

Opis: Particle formation and the design of solid particles and powdery composites with unique properties is at the moment one of major the developments of supercritical fluid (synonyms: dense gases, dense fluids, high pressure) applications. Conventional well-known processes for the particle-size redistribution of solid materials are crushing and grinding (which for some compounds are carried out at cryogenic temperatures), air micronization, sublimation, and recrystallization from solution. There are several problems associated with the above-mentioned processes. Some substances are unstable under conventional milling conditions, in recrysfallization processes the product is contaminated with solvent and waste solvent streams are produced. The application of supercritical fluids may overcome the drawbacks of conventional processes, and powders and composites with special characteristics can be produced. Several processes for the formation and design of solid particles using dense gases have been studied intensively. The unique thermodynamic and fluid-dynamic properties of supercritical fluids can also be used for the impregnation of solid particles, for the formation of solid powderous emulsions, particle coatings, e.g. for the formation of solids with unique properties for use in different applications. This review will focus on the fundamentals and on recent advances of particle formation and design processes using supercritical fluids on their applications and the technological advantages and disadvantages of various processes.
Ključne besede: chemical processing, high pressure technology, supercritical CO2, proteinase, thermal stability, pressure stability, enzyme activity, water content, dense gases
Objavljeno: 31.05.2012; Ogledov: 1528; Prenosov: 47
.pdf Celotno besedilo (514,21 KB)
Gradivo ima več datotek! Več...

Proteinase-catalyzed hydrolysis of casein at atmospheric pressure and in supercritical media
Mateja Primožič, Maja Leitgeb, Željko Knez, 2006, izvirni znanstveni članek

Opis: In the presented work, reaction parameters for hydrolysis of casein, catalyzed by Carica papaya latex at atmospheric and high pressure, were optimized. Casein is a remarkably efficient nutrient, supplying not only essential amino acids, but also some carbohydrates, calcium, phosphorus and therefore is very important for the food industry. Different reaction parameters such as temperature, stirring rate, casein and enzyme concentration were studied to found the optimal conditions for the reaction. Reactions were performed at atmospheric pressure; an influence of temperature/pressure on the casein hydrolysis in supercritical carbon dioxide (SC CO2) was also investigated to improve the reaction rates. Higher conversions were achieved when the reactions were performed in SC CO2, even though casein was not soluble in this medium.
Ključne besede: chemical processing, high pressure technology, supercritical CO2, enzymatic reactions, proteinase, Carica papaya latex
Objavljeno: 31.05.2012; Ogledov: 1207; Prenosov: 17
URL Povezava na celotno besedilo

Stability of proteinase from Carica papaya latex in dense gases
Maja Leitgeb, Mateja Primožič, Željko Knez, 2005, izvirni znanstveni članek

Opis: Proteinase from Carica papaya latex was tested on its thermal stability at atmospheric pressure and in supercritical carbon dioxide, near-critical propane and dimethyl-ether. In supercritical carbon dioxide at 300 bar thermalactivation of the examined proteinase was improved in the comparison toatmospheric pressure. In propane and dimethyl-ether (300 bar) activity of the examined proteinase decreased. Influence of compressionžexpansion cycles on residual activity of the same proteinase in supercritical carbon dioxide (300 bar and 50 °C) was studied, as well. Different ways of transition from supercritical to low-pressure-state were used which affected residual activityof the proteinase.Addition of water in the system increased activity of proteinase from C. papaya, which was incubated in supercritical carbon dioxide for 24 h. Optimum amount of water was found to be between 0.5 and 0.7 g/L.
Ključne besede: chemical processing, high pressure technology, supercritical CO2, proteinase, thermal stability, pressure stability, enzyme activity, water content, dense gases
Objavljeno: 01.06.2012; Ogledov: 1112; Prenosov: 18
URL Povezava na celotno besedilo

Iskanje izvedeno v 0.08 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici