| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 2 / 2
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Prenos stila slike s pomočjo prenosnega učenja in nevronskih mrež : magistrsko delo
Ivona Colakovic, 2021, magistrsko delo

Opis: Hitro razvijajoče področje umetne inteligence se v zadnjih letih integrira v različna področja in tako postaja neizogiben del številnih človeških dejavnosti. Umetna inteligenca je pokazala, da se lahko integrira tudi v področje umetnosti in ustvarja nova umetniška dela a podlagi kopiranja stilov grafičnih del priznanih avtorjev. Nevronske mreže, ki posnamejo delovanje človeških možganov, dodatno pomagajo pri tem postopku, saj omogočajo razpoznavo vzorcev v stilih grafičnih del. V magistrskem delu se osredotočimo na raziskovanje tehnike prenosa stila grafičnih del iz enega na drugo grafično delo s pomočjo nevornskih mrež. V ta namen opišemo sestavne dele nevronskih mrež, podrobneje razložimo konvolucijske nevronske mreže in predstavimo pojem prenosnega učenja. Z namenom boljšeg razumevanja področja prenosa stila ilustracij pregledamo obstoječe raziskave ter opišemo delovanje algoritma za prenos stila. V okviru magistrskega dela prikažemo implementacijo in rezultate eksperimenta skozi katerega smo ugotovili, da pristop prenosa stila lahko uspešno prenaša stil iz ilustracij na fotografije kakor tudi iz ilustracij na druge ilustracije.
Ključne besede: prenos stila, konvolucijske nevronske mreže, prenosno učenje
Objavljeno v DKUM: 18.10.2021; Ogledov: 915; Prenosov: 100
.pdf Celotno besedilo (3,40 MB)

2.
Klasifikacija besedila s prenosnim učenjem : magistrsko delo
Jure Žerak, 2020, magistrsko delo

Opis: Magistrsko delo ima namen preizkusiti metodo prenosnega učenja na obdelavi naravnega jezika in jo primerjati s klasičnimi metodami učenja nevronskih mrež, metodo LSTM. V delu sta uporabljena opisna metoda za teoretični in eksperiment za praktični del dela. V slednjem smo ugotovili, da je metoda prenosnega učenja na majhni količini podatkov bolj točna od klasičnih metod, vendar za to potrebuje več časa. Delo primerja prednaučeni model Bert in klasično metodo LSTM, zato je priporočljivo primerjati rezultate tudi z drugimi prednaučenimi modeli in klasičnimi metodami.
Ključne besede: nevronske mreže, prenosno učenje, NLP, PyTorch, LSTM
Objavljeno v DKUM: 01.12.2020; Ogledov: 803; Prenosov: 94
.pdf Celotno besedilo (1,99 MB)

Iskanje izvedeno v 9.62 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici