| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 3 / 3
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
The pointed version of Lipscomb's embedding theorem
Ivan Ivanšić, Uroš Milutinović, 2002

Opis: Naj bo ▫$Sigma(tau)$▫ posplošena krivulja Sierpińskega. Le-ta se lahko na naraven način identificira z Lipscombovim prostorom ▫${cal J}(tau)$▫. Tedaj za poljuben ▫$n$▫-dimenzionalni metrični prostor ▫$X$▫ s težo ▫$tau$▫ obstaja vložitev prostora ▫$X$▫ v ▫$L_n(tau) subseteq Sigma(tau)^{n+1}$▫, kjer je ▫$L_n(tau)$▫ množica vseh točk z vsaj eno iracionalno koordinato. Tu dokažemo, da to vložitev lahko izberemo tako, da v določeni točki zavzema vnaprej podano vrednost. Pravzaprav je dokazan močnejši izrek, da so vrednosti vložitve lahko vnaprej podane v točkah poljubne končne množice.
Ključne besede: matematika, topologija, dimenzija pokrivanja, posplošena krivulja Sierpińskega, univerzalni prostor, Lipscombov univerzalni prostor, vložitev, razširitev, mathematics, topology, covering dimension, generalized Sierpiński curve, universal space, Lipscomb universal space, embedding, extension
Objavljeno: 10.07.2015; Ogledov: 275; Prenosov: 23
URL Povezava na celotno besedilo

2.
Closed embeddings into Lipscomb's universal space
Ivan Ivanšić, Uroš Milutinović, 2006

Opis: Naj bo ▫${mathcal{J}}(tau)$▫ Lipscombov enodimenzionalni prostor in ▫$L_n(tau) = {x in {mathcal{J}}(tau)^{n+1}|$▫ vsaj ena koordinata od ▫{sl x}▫ je iracionalna ▫$} subseteq {mathcal{J}}(tau)^{n+1}$▫ Lipscombov ▫$n$▫-dimenzionalni univerzalni prostor s težo ▫$tau ge aleph_0$▫. V tem članku dokazujemo, da če je ▫$X$▫ poln metrizabilni prostor in velja ▫$dim X le n$▫, ▫$wX le tau$▫, tedaj obstaja zaprta vložitev prostora ▫$X$▫ v ▫$L_n(tau)$▫. Še več, vsako zvezno funkcijo ▫$f: X to {mathcal{J}}(tau)^{n+1}$▫ lahko poljubno natančno aproksimiramo z zaprto vložitvijo ▫$psi: X to L_n(tau)$▫. Razen tega sta dokazani relativna verzija in punktirana verzija. V primeru separabilnosti je dokazan analogni rezultat, v katerem je klasična trikotna krivulja Sierpińskega (ki je homeomorfna ▫${mathcal{J}}(3)$▫) nadomestila ▫${mathcal{J}(aleph_0)}$▫.
Ključne besede: matematika, topologija, dimenzija pokrivanja, posplošena krivulja Sierpińskega, univerzalni prostor, Lipscombov univerzalni prostor, vložitev, razširitev, poln metrični prostor, zaprta vložitev, mathematics, topology, covering dimension, embedding, closed embedding, generalized Sierpiński curve, universal space, Lipscomb universal space, complete metric space, extension
Objavljeno: 10.07.2015; Ogledov: 352; Prenosov: 50
URL Povezava na celotno besedilo

3.
Iskanje izvedeno v 0.09 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici