| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju


1 - 10 / 10
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
Vpliv izdelovalnih parametrov na lastnosti izdelkov iz Ti-6Al-4V, narejenih s selektivnim laserskim taljenjem in plastenje površine z bioaktivnim polimerom
Snehashis Pal, 2019, doktorska disertacija

Opis: Technological parameters included in energy density (ED) are the more powerful tools in selective laser melting (SLM) technology which can be used in the time of fabrication to regulate chemical, metallurgical, and mechanical properties of a product. The volumetric Energy Density (ED) depends on the energy input employed by the laser power, scanning speed, hatch spacing, and the layer thickness. Density, microstructure, surface morphology, dimension accuracy, strength and porosity including the number of pores, place of the pore, size of a pore shape of a pore, inclusions of pores of an SLM product depends on the processing parameters. As the powder material fusion process is done by track by track and layer by layer, the architecture of the microstructure in a product is oriented as the direction of building up too. The research has emphasized on metallurgical properties, tensile properties, and producing the non-porous products from Ti-6Al-4V alloy powder and surface modification using bioactive polymer for orthopedic application. The research has followed four steps to study the metallurgical properties and finding out the combinations of technological parameters in producing non-porous products. The purpose of the first step of the study was to examine the effects of ED on the product properties and to obtain an optimum ED as well as the optimal range of scanning speed. The second step of the study has focused on the influences of laser power. The third step of the study has investigated the effect of amounts of track overlapping and hatch spacing. Almost a zero-porosity product has been able to produce by following these three steps of the ongoing research. The fourth step has studied the metallurgical properties emphasizing on re-melting of every layer. High-density products have been found in the fourth step where a small amount of very small sized pores are present as a result of keyhole effect and gaseous bubble entrapment mainly. Four buildup orientations have been selected for each ED in the first step of the study to examine the tensile properties of the products. The best buildup orientation has been seen in longitudinally vertical tensile specimens considering tensile properties. The tensile properties have also been studied in the second and third step of the study with best build up orientation of the tensile specimens. The alterations of metallurgical and tensile properties have also been investigated after heat-treatment of the specific samples. Dimensional accuracies were also invigilated on the cubic, and tensile specimens over the studies and consequently, inaccuracies have been noticed. The fifth step of the study has observed the pore properties, adhesion properties, the compressive strength of gelatin coating manufactured using unidirectional freezing and the freeze-drying process of three different gelatin concentrations on four different surfaced Ti-6Al-4V alloy substrates. The results indicate that the coating properties depend on the substrate’s surface texture as well as the concentration of gelatin. Above 80% of porosity, interconnected and well-aligned pores of 75-200 μm have been obtained which is required to stimulate bone ingrowth histologically.
Ključne besede: selective laser melting, unidirectional freezing, fabricating parameters, porosity, microstructure, mechanical strength
Objavljeno: 01.04.2019; Ogledov: 736; Prenosov: 95
.pdf Celotno besedilo (10,52 MB)

Evaluation of the constriction size reduction of granular filters due to upstream cohesive base-soil erosion
Samira Azirou, Ahmed Benamar, Abdelkader Tahakourt, 2018, izvirni znanstveni članek

Opis: This study is devoted to filter-constrictions analysis and its application with respect to void and constrictions reduction during soil filtration. The experimental investigation involves combined Hole Erosion-Filtration tests using several soils and filters. The base soils are lean clays and the granular filters are selected according to the usual filtration criteria. The combination of the experimental data for porosity variation and the analytical results from the Constriction Size Distribution (CSD) analysis was used to evaluate the constrictions size reduction subsequent to the filtration process. The filtration depth was also estimated according to the retained soil mass and the porosity reduction deduced from the measured hydraulic conductivity. An analytical model of the CSD was applied to the experimental results in order to assess the constrictions reduction. As regards the obtained results, a nonuniform constriction reduction was suggested according to the effective filtration depth, advocating a dynamic filter action.
Ključne besede: granular filter, internal erosion, constriction, porosity, filtration index
Objavljeno: 11.10.2018; Ogledov: 557; Prenosov: 345
.pdf Celotno besedilo (653,76 KB)
Gradivo ima več datotek! Več...

The dynamic properties of the snail soil from the Ljubljana marsh
Bojan Žlender, Ludvik Trauner, 2007, izvirni znanstveni članek

Opis: A series of cyclic triaxial tests was performed on snail-soil samples with different porosities. The cyclic loading was performed with a Wykeham Farrance cyclic triaxial system. The investigation was based on a series of tests in which the following conditions were varied: the initial effective pressures (50, 100, and 150 kPa), the void ratio after consolidation (2.0–1.2) and the cyclic loading expressed by the cyclic stress ratio CSR (0.1–1.0). Measurements were made of the stress, the deformation and the pore-water pressure. The results of the tests show that interdependency exists between the geomechanical characteristics and the porosity. These relationships can be expressed as functions of the density, the porosity or the water content. It is evident from the results that the changes in the coefficient of permeability, the coefficient of consolidation, and the coefficient of volume compressibility are non-linear with respect to the changes in the porosity. However, the changes at high porosity are much greater than the changes at low porosity, and the changes of the mechanical parameters, such as the Young’s modulus, Poisson’s ratio, and the friction angle, are indistinct and almost linear at lower changes of porosity, and after that become non-linear. The initial void ratio e is extremely high and the snail soil is liquid after consolidation; a volume strain of εvol > 16 % is needed for the plastic limit state. The chemical and mineral composition, the particle size distribution and the remains of micro-organisms in the snail soil are constants. In addition, the specific surface is independent of the porosity and the density or unit weight, the porosity and the volume strain are in the well-known correlation. The performed cyclic triaxial tests show the dynamic characteristics of the snail soil and the influence of the porosity on the cyclic loading strength. The snail soil was recognized as a highly sensitive material. A large strain appears after the initial cycles. The pore pressure, increases already during the first cycle, to the hydrostatic part of the cyclic loading, or more (depending on CSR). The damping ratio increases exponentially with strain, after some cycles it reach its maximum value, and after that it decreases to the asymptotic value. The reason for such behaviour is the large deformation. The maximum and asymptotic values of the damping ratio are a changed minimum with a void ratio. There is obviously no influence of the porosity on the damping ratio. The shear modulus is described in relation to shear strain. The increasing of the pore pressure is independent of the porosity until it reaches some value of the pore-pressure ratio (>0.7). Similarly, the increasing of the shear strain becomes dependent on the void ratio until it reaches some particular value of the shear strain (>3%). The deformation and failure lines for the different porosities are determined from the relationship between the shear stress and the effective stress at some shear strain, after 10 cycles. The relationships between the shear stress and the effective stress at some value of the pore-pressure ratio are expressed in a similar way. Two kinds of criteria were used to determine the triggering of liquefaction during the cyclic triaxial tests: first, when the pore pressure becomes equal to the effective confining pressure, and, second, when the axial strain reaches 5% of the double amplitude.
Ključne besede: snail soil, cyclic triaxial test, porosity, permeability, consolidation, Young’s modulus, shear modulus, damping ratio, Poisson’s ratio, friction angle
Objavljeno: 18.05.2018; Ogledov: 840; Prenosov: 56
.pdf Celotno besedilo (479,11 KB)
Gradivo ima več datotek! Več...

The influence of porosity on geomechanical characteristics of snail soil in the Ljubljana Marsh
Bojan Žlender, Ludvik Trauner, 2006, izvirni znanstveni članek

Opis: This article focusses on mineralogical and physical characteristics of snail soil and their influence on parameter values of geomechanical characteristics.Snail soil, which got its name from fossil remains, is a typical layer observed in the Ljubljana marsh. It is distincltly porous, saturated and in a liquid consistency state. Snail soil was investigated for mineralogical and physical characteristics in the Laboratory of Soil Mechanics, Faculty of Civil Engineering of the University in Maribor. Mineral and chemical composition, visual appearance, specific surface and grain property were determined. Physical characyteristics show that snail soil is saturated in nature, highly porous and almost liquid. Geomechanical characteristics were investigated for their interdependency on physical characteristics. A series of triaxial tests were performed on snail soil samples of different porosity, density and water content. Cylindrical samples of the height of 100 mm and the diameter of 50 mm were tested using three-axial testing apparatus. The results of the tests show that interdependency exists between geomechanical characteristics and porosity. These relationships can be expressed as functions of density, porosity or water content. It is evident from the results that changes of the coefficient of permeability, the coefficient of consolidation, and the coefficient of volume compressibility are nonlinear with respect to changes in porosity. Changes of mechanical parameters, such as Young`s modulus, Poisson`s ratio andfriction angle are indistinct and almost linear at lower changes of porosity.
Ključne besede: geomechanics, properties of soils, snail soil, triaxial testing, porosity, permeability, consolidation, Young`s modulus, Poisson`s ratio, shear angle
Objavljeno: 17.05.2018; Ogledov: 592; Prenosov: 39
.pdf Celotno besedilo (486,06 KB)
Gradivo ima več datotek! Več...

Simulation of the casting process - a powerfull tool for enchanced design of the cutting teeth in surface mining
Radomir Slavković, Zvonimir Jugović, Dražan Kozak, Aleksandar Veg, Radomir Radiša, Snežana Dragićević, Marko Popović, 2013, izvirni znanstveni članek

Opis: Recent development in the computer simulation technology caused a tremendous influence on a rapid prototyping in casting process. These computational tools facilitate engineering work and urge moulding verification in foundries. Among dedicated software packages the MAGMASoft is selected for availability reasons. Its effectiveness is proved with the simulation of moulding process of the cutting teeth for a bucket wheel excavator Use of MAGMASoft enables a shortcut to a forceful and durable product, without internal cavities and micro-porosity. Such advancement of the moulding process is described in this paper.
Ključne besede: casting, porosity, wear, simulation, MAGMASoft
Objavljeno: 03.07.2017; Ogledov: 1617; Prenosov: 93
.pdf Celotno besedilo (1,03 MB)
Gradivo ima več datotek! Več...

Microcellular open-porous polystyrene-based composites from emulsions
Sebastjan Huš, Mitja Kolar, Peter Krajnc, 2014, izvirni znanstveni članek

Opis: Series of cross-linked polystyrene samples were prepared using an emulsion templating approach, where monomers were contained in the continuous phase of the emulsion, while the droplet aqueous phase induced primary pores, connected with a number of secondary pores. Emulsions with a high fraction of the droplet phase (HIPEs) were used and stabilised with a combination of a surfactant (sorbitan monooleate) and various types of particles (charcoal powder, copper powder and carbon nanopowder). The morphology of the resulting porous polymer depends on the type and amount of the particles added to the emulsion; however, in all the cases open-cellular morphology was formed. The size of the primary pores (cavities) ranged from 5 µm to 25 µm, while the size of the secondary interconnecting pores was from 1 µm to 5 µm. The materials were investigated using scanning electron microscopy and nitrogen adsorption/desorption.
Ključne besede: polyHIPE, porous polymers, nanocomposites, porosity, polystyrene
Objavljeno: 16.03.2017; Ogledov: 911; Prenosov: 91
.pdf Celotno besedilo (1,06 MB)
Gradivo ima več datotek! Več...

The usage of genetic methods for prediction of fabric porosity
Polona Dobnik-Dubrovski, Miran Brezočnik, 2012, samostojni znanstveni sestavek ali poglavje v monografski publikaciji

Ključne besede: fabrics, porosity, genetic methods
Objavljeno: 10.07.2015; Ogledov: 819; Prenosov: 66
URL Povezava na celotno besedilo

Selestina Gorgieva, 2014, doktorska disertacija

Opis: This work presents the methodological study, processing and optimization of novel, technologically acceptable procedure for in situ coating of polypropylene (PP) mesh (used for hernia treatment) with physico-chemically, mechanically and micro-structurally different gelatin (GEL) scaffolds to assess implant composite biocompatibility impact. In order to systematically follow the experimental work progress and respective achievements, whole research path is subdivided into three main sections. In the first section, the procedure for fabrication of gradiently micro-porous GELscaffolds on the cryo-unit’s cooling plate surface, using spatiotemporal and temperature- controlled gelation and freezing, followed by lyophylizaton was studied. Subsequently, cross-linking procedure using different molarities of reagents (EDC and NHS) and reaction media (100% PBS or 20/80% PBS/EtOH mixture) was performed for variable time extensions (1-24 h), rendering scaffolds physico-chemical properties. In this way, scaffolds with micro-structures having porosity gradient from 100 µm to 1000 µm and pores with rounded to ellipsoid morphology were formed, which, in combination with ethanol (EtOH) addition in cross-linking media modulates the swelling capacity towards twice lower percentages (~600%) comparing with scaffolds cross-linked in 100% PBS. Whilst the presence of EtOH reduce the cross-linking kinetic by retaining the scaffolds’ micro-structure formed during freezing, the 100% PBS and higher EDC molarity resulted in 40% cross-linking degree, being expressed as a thermal resistance up to 73 °C. The presented integral fabrication procedure was shown to allow tuning of both, the physical and micro-structural properties of scaffold, utilized in preparation of materials for specific biomedical applications. In the second part, the complex relation between surface and interface-related physico-chemical properties and gradient micro-structuring of 3D GELscaffolds, being fabricated by simultaneous temperature- controlled freeze-thawing cycles and in situ cross-linking using variable conditions (pH and molarity of carbodiimide reagent) and fibroblast cells viability (by tracking of their spreading and morphology) was established. Rarely- populated cells with rounded morphology and small elongations were observed on scaffolds with apparently negatively- charged surface with a lower cross-linking degree (CD) and consequently higher molecular mobility and availability of cell-recognition sequences, in comparison with the prominently- elongated and densely- populated cells on a scaffold’s with positively- charged surface, higher CD and lower mobility. Surface micro-structure effect was demonstrated by cell’s vacuolization and their pure inter-communication being present on scaffold’s bottom side with smaller pores (25±19 µm) and thinner pore walls (9±5 µm), over the air- exposed side with twice bigger pores (56±38 µm) and slightly thicker pore walls (12±6 µm). Strong correlation of preparation conditions (pH and reagents molarity) with CD (r2=0.96) and moderate correlation with local molecular mobility (r2 =-0.44), as well as micro-structure features being related to temperature gradient, imply on possibility to modulate scaffold’s properties in a direction to guide cell’s viability and most likely its genotype development. The third part presents an innovative strategy for the fabrication of bio-active PPmesh-GELscaffold composites with a potential for abdominal hernia treatment, where mesothelial cells in-growth have to be stimulated together with fibroblasts on-site proliferation, while formation of fibrin-developing, viscera-to-abdominal wall adhesions should be reduced, together with bacteria- related infections. In this respect, the plasma pre-activated PPmesh was coated with micro-structured GELscaffold, with pore size in 50 µm to 100 µm range at the upper-side and loosely- porous network at the composite bottom side, being modulated by sample thickness and freezing end- temperature applied. Simultaneously, the
Ključne besede: gelatin, targeted cross-linking, controlled freezing, gradiental micro-porosity, scaffold, surface and interface chemistry, physico-mechanical properties, polypropylene mesh, composite, biocompatibility.
Objavljeno: 07.05.2014; Ogledov: 1418; Prenosov: 106
.pdf Celotno besedilo (4,98 MB)

Porosity sensor by using quartz crystals and two excitation signals
Vojko Matko, 2003, objavljeni znanstveni prispevek na konferenci

Opis: In response to a need for a more accurate porosity measuring method for small solid samples (app. 1 g in mass) the porosity measurement sensor using a sensitive capacitive-dependent crystal was developed. This paper presents the new sensor and the probe sensitivity, frequency dependence on the volume. In addition, the new idea of excitation of the entire sensor with stochastic test signals is described, and the porosity measuring method is provided. The latter includes the influence of test signals on the weighting function uncertainty. The experimental results of the porosity determination in volcanic rock samples are presented. The uncertainty of porosity measurements is less than 0.1% in the temperature range 10 - 30°C.
Ključne besede: electrical measurements, porosity, soil, capacitive dependent crystals, sensor, glass test tube, direct digital method
Objavljeno: 01.06.2012; Ogledov: 1490; Prenosov: 86
URL Povezava na celotno besedilo

Preparation and characterization of poly(high internal phase emulsion) methacrylate monoliths and their application as separation media
Peter Krajnc, Nermina Leber, Dejan Štefanec, Sandra Kontrec, Aleš Podgornik, 2005, izvirni znanstveni članek

Opis: Poly(glycidyl methacrylate-co-ethyleneglycol dimethacrylate) monolithic supports were prepared by radical polymerisation of the continuous phase of water in oil high internal phase emulsions. Morphology of monolithic materialswas studied by scanning electron microscopy and mercury intrusion porosimetry. The ratio of phase volume and the degree of crosslinking influenced the void size and pore size distribution of resulting polymers. Void sizes between 1 and 10 m were observed and average pore sizes around 100nm. Polymers with 60, 75, 80 and 90% pore volume were prepared and even samples with highest pore volume showed good mechanical stability. They were modified to bear weak-anion exchange groups and tested on the separation of standard protein mixture containing myoglobin, conalbumine and trypsin inhibitor. Good separation was obtained in a very short time similar to the separation obtained by commercial methacrylate monoliths. However, higher dispersion was observed. Bovine serum albumin dynamic binding capacity for monolith with 90% porosity was close to 9 mg/ml.
Ključne besede: organic chemistry, methacrylate monoliths, preparation, emulsion polymerization, high porosity, high mechanical stability, polymer chromatographic supports, monolithic methacrylate supports, protein separation
Objavljeno: 01.06.2012; Ogledov: 1646; Prenosov: 38
URL Povezava na celotno besedilo

Iskanje izvedeno v 0.27 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici