| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


11 - 20 / 34
Na začetekNa prejšnjo stran1234Na naslednjo stranNa konec
11.
SINTEZA FUNKCIONALNIH ZAMREŽENIH MAKROMOLEKUL IZ EMULZIJ
Urška Sevšek, 2014, doktorska disertacija

Opis: V okviru doktorske disertacije smo pripravili porozne polimere z verižno radikalsko polimerizacijo emulzij z visokim deležem notranje faze na osnovi monomera stirena in zamreževala divinilbenzena, iniciirano termično ali fotokemično. Spreminjali smo delež zamreževala in preučili njegov vpliv na morfologijo nastalega polimera in količino preostalih vinilnih vezi v polimerni matriki. V omenjen nepolarni sistem smo vključili delno polarno metakrilno kislino ter s tem v polimerno matriko uvedli funkcionalno karboksilno skupino. Stabilnost emulzije smo dosegli z uporabo ustrezne kombinacije surfaktantov. Maksimalen delež metakrilne kisline, ki smo jo lahko dodali emulziji, je bil 20 mol %. Kot metodo polimerizacije smo uporabili fotopolimerizacijo, saj je pri uporabi termično iniciirane radikalske verižne polimerizacije prihajalo do prehajanja metakrilne kisline v vodno fazo emulzije. Pri fotopolimerizaciji konverzija iz monomera v polimer poteka precej hitreje in metakrilna kislina je ostala v organski fazi. Rezultat je bil porozen poliHIPE material s kislinskimi skupinami in tipično poliHIPE strukturo. Kislinske skupine smo funkcionalizirali s tionil kloridom do kislinskega klorida. Uspešnost konverzije je bila 76-odstotna. Funkcionalnost polimera smo preizkusili z reakcijo nukleofilne substitucije z bifunkcionalnimi amini. Preverili smo, kako koncentracija diamina in dolžina ogljikove verige vplivata na uspešnost konverzije ter na strukturo produkta. Pri uporabi diamina z daljšo ogljikovo verigo je bila konverzija za 10 % boljša od konverzije, kjer smo uporabili krajši diamin. Pri uporabi daljšega diamina se je z zviševanjem koncentracije le-tega povečevala stopnja konverzije, medtem ko pri uporabi krajšega diamina tega efekta ni bilo opaziti. V drugem delu doktorske disertacije smo pripravili porozne poli(stiren-ko-divinilbenzen) polimere z deležem zamreževala med 37 in 80 mol %. Preverili smo vpliv deleža zamreževala na BET specifično površino in ugotovili trend naraščanja le-te z višanjem deleža zamreževala. Iz spektrov infrardeče spektroskopije smo določili delež preostalih vinilnih vezi v polimerni matriki. Da bi na polimer uvedli funkcionalne skupine, smo izvedli funkcionalizacijo z multifunkcionalnimi tioli. Uporabili smo tiol z dvema in štirimi tiolnimi skupinami. Nato smo na graftiran polimer vezali še bifunkcionalni alken. Izkoristek funkcionalizacije se je večal z višanjem deleža zamreževala, najvišja dosežena stopnja konverzije je bila 44 %. Višje konverzije smo dosegali z uporabo tiola z dvema tiolnima skupinama. Pri primerjavi porazdelitve velikost mezopor smo opazili, da je po funkcionalizaciji prišlo do zmanjšanja števila le-teh. Izkazalo se je, da je za to odgovorno topilo, ki smo ga uporabili. Poizkusili smo še enostopenjsko funkcionalizacijo, kjer smo v reakcijsko mešanico dodali tako ditiol kot bifunkcionalni alken. V tem primeru je prišlo do precejšnjega povečanja BET specifične površine, vendar je bila stopnja konverzije dokaj nizka. Nadalje smo v poli(stiren-ko-divinilbenzen) poliHIPE material uvedli mezopore in mikropore z metodo naknadnega zamreženja oziroma hiperzamreženja. Uporabili smo peroksidni iniciator, di-tert-butil peroksid, za katerega je značilen specifičen mehanizem delovanja. Delež divinilbenzena je variiral med 52 in 80 mol %. Zanimal nas je vpliv procesa na makroskopsko morfologijo materiala. Izkazalo se je, da reakcija naknadnega zamreženja ne vpliva bistveno na morfologijo, do večjih razlik v porazdelitvi velikost primarnih por je prišlo le v primeru najmanj zamreženega vzorca. Reakcijo hiperzamreženja smo izvedli v treh topilih: toluenu, acetonitrilu in dimetilformamidu. Kot najbolj uspešno topilo se je izkazal toluen, pri katerem je v vseh primerih prišlo do največjega porasta BET specifične površine, najvišji faktor povečanja specifične površine je znašal 7,2. Prav tako je bil delež mezopor in mikropor v materialu, funkcionaliziranem v toluenu, najvišji. Pri uporabi dimetilformamida in acetonitri
Ključne besede: porozni polimeri, poliHIPE, polimerizacija, hiperzamreženje, polistiren, polimetakrilat, funkcionalizacija polimerov
Objavljeno: 11.04.2014; Ogledov: 1215; Prenosov: 246
.pdf Celotno besedilo (4,50 MB)

12.
POROZNI POLIMERI IZ ALIFATSKIH URETANSKIH DIAKRILATOV
Davor Bezget, 2014, diplomsko delo

Opis: Na osnovi monomera alifatski uretanski diakrilat (AUD) smo želeli z uporabo emulzij sintetizirati porozne poliHIPE materiale. Zaradi različne uporabe poliHIPE materialov je pomembno, da poskušamo sintetizirati le te z različnimi monomeri. Posledično dobimo različne kemijske in fizikalne lastnosti. Ker so določeni poliHIPE materiali trdi in krhki, smo želeli sintetizirati bolj prožen material. V kombinaciji z alifatskim uretanskim diakrilatom smo uporabljali tudi stiren, divinil benzen, divinil adipat in tetratiol (pentaeritritol tetrakis(3-merkaptopropionat)). Sintezo smo izvajali v steklenem reaktorju. K organski fazi, ki so jo sestavljali monomeri, surfaktant, topilo in iniciator smo po kapljicah dodajali vodno fazo, ki jo je predstavljala deionizirana voda z raztopljenim kalcijevim kloridom. S pomočjo propelerskega mešala smo pri 300 obr/min po 60 min dobili emulzijo. Za polimerizacijo te emulzije smo uporabljali dva različna postopka; termično polimerizacijo in fotopolimerizacijo. Polimere smo čistili z etanolom in destilirano vodo. Monolite, ki smo jih dobili s termično polimerizacijo, smo čistili v Soxletovem aparatu. Vzorce smo sušili v digestoriju, nekatere tudi v vakuumskem sušilniku. S spreminjanjem sestave organske faze smo želeli dobiti porozen poliHIPE monolit. Stabilnost emulzije in polimerizacija je bila v večina primerih uspešna. Problem pa je nastal, ker so se monoliti v času sušenja zelo krčili. Kemijsko sestavo vzorcev smo spremljali s FTIR spektroskopijo. Za nas najpomembnejši signali so bili za vezi N-H, C-O, C=O. Ti signali nam dokazujejo vsebnost alifatskega uretanskega diakrilata v vzorcu. Strukturo vzorcev smo analizirali s SEM mikroskopijo. Te posnetke smo naredili s posušenimi vzorci in z vzorci, ki se še niso sušili. Polimerizacija stabilnih emulzij je uspela, vendar so SEM posnetki pokazali, da večina vzorcev nima tipične poliHIPE morfologije. Vzorec, ki je imel samo 5% vsebnost alifatskega uretanskega diakrilata je pokazal lepo poliHIPE strukturo. Prvi cilj, uspešna polimerizacija z alifatskim uretanskim diakrilatom, je bil dosežen. Drugi cilj je pa bil sintetizirati poliHIPE material, to pa nam je uspelo samo v primeru z malo vsebnostjo alifatskega uretanskega diakrilata.
Ključne besede: porozni polimeri, emulzije z visokim deležem notranje faze, poliHIPE materiali, emulzijska polimerizacija, klik reakcije, tiol-en polimerizacija
Objavljeno: 03.06.2014; Ogledov: 1608; Prenosov: 223
.pdf Celotno besedilo (3,98 MB)

13.
RAZVOJ DENDRIMERNIH poliHIPE NOSILCEV KOT BAZNIH KATALIZATORJEV
Gregor Kodrič, 2014, diplomsko delo

Opis: PoliHIPE materiali so porozni emulzijsko pripravljeni polimeri, sintetizirani znotraj emulzij z visokim deležem notranje faze (HIPE). Zelo porozna notranja struktura jim daje posebne karakteristike, zato so uporabni pri različnih tehničnih in industrijskih aplikacijah. Raznovrstnost uporabe dosežejo s funkcionalizacijo ter modifikacijo raznih strukturnih parametrov med in po sintezi. Namen diplomskega dela je bila študija zdužitve aminskega dendrimera kot organskega baznega katalizatorja s PoliHIPE polimerom. Z vezavo teh katalizatorjev na polimerne nosilce smo hoteli združiti najboljše lastnosti obeh materialov. Tako bi imeli poleg katalitičnih lastnosti še možnost boljšega izolacijskega postopka produktov iz reakcij, možnost recikliranja takega katalizatorja, znižanja stroškov reakcij, procesi bi lahko potekali hitreje, najpomembnejša pridobitev tega postopka pa bi bila, da bi s tako funkcionaliziranimi polimernimi katalizatorji zmanjšali količino odpadne snovi pri reakcijah, kar bi moralo biti vodilo pri načrtovanju modernih sinteznih postopkov. Uporabili smo aminske dendrimere na osnovi tris-(2-aminoetil)amina. Sintezo dendrimera smo opravili tako, da smo najprej vezali akrilonitril na tris-(2-aminoetil)amin v vodi kot topilu, nakar smo vmesni nitrilni produkt reducirali do amina z LiAlH4 in tako smo dobili prvo generacijo aminskih dendrimerov. Le-te je mogoče uporabiti v namene organokatalize kot bazne katalizatorje v širokem spektru reakcij. Uporabnost tris-(2-aminoetil)amina in iz njega izhajajočih dendrimerov smo preizkušali pri aldolnih reakcijah (Knoevenagelova kondenzacija) kot testnih reakcijah. Tako smo preverili, pod kakšnimi pogoji osnovni aminski katalizator tris-(2-aminoetil)amin katalizira reakcije med benzaldehidom in tremi modelnimi ketoni različnih reaktivnosti (acetofenon, dibenzoilmetan, dimedon) in ugotovili, da se le najbolj reaktiven substrat – dimedon - pretvori v odgovarjajoč produkt kondenzacije.
Ključne besede: reakcije na trdnih nosilcih, PoliHIPE polimeri, aminski dendrimeri, bazni katalizatorji, obnovljivi reagenti, aldolna kondenzacija
Objavljeno: 11.09.2014; Ogledov: 1160; Prenosov: 123
.pdf Celotno besedilo (6,34 MB)

14.
POLIMERNO VEZANI OKSALATI KOT OBNOVLJIVI VIRI KEMILUMINISCENCE
Selena Bošnjak, 2014, diplomsko delo

Opis: V diplomskem delu smo raziskali možnosti sinteze derivatov diaril oksalatnih estrov vezanih na polimerne nosilce. Diaril oksalati so zanimive spojine za kemiluminiscenčne reakcije, saj pri reakciji z vodikovim peroksidom nastane visoko-energijska molekula, ki se ob prisotnosti primernega občutljivca pretvori v osnovno stanje s sevanjem svetlobe. Arilni del molekule pomembno vpliva na kemiluminiscenčne lastnost, zato smo raziskali možnosti vezave elektron-privlačne skupine, kot je brom, ki bi podaljšal čas oddajanja svetlobe. Raziskali smo, kakšne so možnosti v strukturi arilnega dela molekule, da bi lahko omogočila pripravi diaril oksalatov na trdnih nosilcih. Ugotovili smo, da mora benzenski del molekule vsebovati fenolno skupino, preko katere se lahko veže oksalatna skupina ter aminsko skupino, ki bi služila za vezavo na benzilno mesto v polimernem nosilcu. Iz tega razloga smo raziskali reakcijo bromiranja 4-metoksibenzilamina in 4-hidroksibenzonitrila z okolju sprejemljivejšo metodo oksidativnega bromiranja z bromovodikovo kislino in vodikovim peroksidom kot oksidantom v različnih topilih pod različnimi pogoji. Nadalje smo raziskali reakcijo vezave na polimerni nosilec in kot modelno spojino uporabili benzil klorid, na katerega smo vezali benzilaminski derivat. V zadnjem koraku svojega raziskovanja, sem pozornost posvetila raziskovanju reakcije vezave oksalatne skupine na fenolni derivat kot modelno reakcijo za uporabo na polimernem nosilcu. S tem smo pripravili metodo, s katero lahko apliciramo kemiluminiscenco v trdni fazi, npr. PoliHIPE polimer. Z vezavo fenola v PoliHIPE polimer bi dobili obnovljivi vir kemiluminiscence, saj bi lahko fenol na ta način enostavno regenerirali v diariloksalatni ester in edini stranski produkt bi bil ogljikov dioksid.
Ključne besede: kemiluminiscenca, diariloksalatni estri, reagenti na trdnih nosilcih, PoliHIPE
Objavljeno: 22.09.2014; Ogledov: 1002; Prenosov: 110
.pdf Celotno besedilo (1,56 MB)

15.
MAKROPOROZNI POLIMERI IZ 2-HIDROKSIETIL METAKRILATA
Lara Terzić, 2014, diplomsko delo

Opis: V diplomskem delu smo na podlagi dveh različnih metod sintetizirali produkte, ki vsebujejo 2-hidroksietil metakrilat. Pripravili smo polimerne poliHIPE monolitne produkte iz emulzij tipa O/V in polimere PHEMA z uporabo sintranih delcev PMMA. Poli(2-hidroksietil metakrilat) (PHEMA) je hidrofilni in biokompatibilni polimer, ki se uporablja na primer kot material za kontaktne leče (hidrogel), za dostavo aktivnih učinkovin, 3D nosilec v tkivnem inženirstvu, idr. Za pridobivanje PHEME smo izvedli termično polimerizacijo in fotopolimerizacijo. Pri obeh metodah smo preučevali vpliv različnih dejavnikov kot so: volumski deleži posameznih faz, zamreževal, hitrost mešanja, temperatura ob mešanju emulzije, staranje emulzije, dodajanje aditivov, različen čas sintranja PMMA in različni načini sušenja monolitov. Cilj naloge je z različnimi eksperimentalnimi postopki ter s spreminjanjem različnih parametrov pridobiti morfološko najbolj primeren polimer, torej bimodalno porazdelitev por, kar pomeni, da so poleg že omenjenih makro por, prisotne tudi pore v nano dimenzijah, t.i. terciarne pore. V ta namen smo uporabili kombinacijo koloidnega sistema ob dodatku porogenih topil. Bimodalno razporeditev por in nekoliko večje vrednosti specifične površine, smo dosegli pri sintezi poliHIPE produktov z dodatkom 10 ut% porogenih topil, t.j. višjih (maščobnih) alkoholov. Na podlagi rezultatov študij vpliva deleža zamreževala in interne faze cikloheksana, smo ugotovili najugodnješo sestavo emulzije za nadaljne eksperimente in sicer 80 vol % cikloheksana ob souporabi 15 mol % zamreževala MBAA. V diplomskem delu je prikazana tudi analiza vpliva različne hitrosti mešanja emulzije na polimeriziran produkt, pri čemer produkt, sintetiziran iz emulzije, mešane pri 150 obr/min rezultira z bistveno večjimi porami kot tisti z mešanjem emulzije pri 300 obr/min. Pri sintezi polimerov s sintranjem PMMA, smo pridobili produkte s precej večjimi primarnimi porami (tudi do 100 µm), kot pri sintezi polHIPE produktov, vendar so poliHIPE produkti rezultirali s kompleksnejšo morfologijo, ki bi celicam omogočala boljši pretok hranilnih snovi in rast. Rezultati kažejo, da je fotopolimerizacija ugodnejša kot termična polimerizacija, saj je produkt z uporabo foto iniciatorja bolj homogene teksture in morfologije, pri čemer fotopolimerizacija poteče hitreje kot termična polimerizacija. Čas sintranja in velikost delcev PMMA je imel bistven vpliv na poroznost in morfologijo produktov, pri čemer smo ugotovili, da se pri 24 h sintranja delci bolje zlepijo in po odstranitvi matrice pridobimo makroporozen polimer. Diplomsko delo prikazuje študijo pridobivanja polimerov, ki bi potencialno lahko služili za nadaljne študije na področju biomedicine in ostalih ved.
Ključne besede: poliHIPE, PHEMA, makroporozni polimeri, poroznost, monoliti
Objavljeno: 22.10.2014; Ogledov: 1258; Prenosov: 114
.pdf Celotno besedilo (7,51 MB)

16.
POLIMERIZACIJA TIOLNIH, VINILNIH IN GLIKOLNIH ESTROV
Tjaša Savić, 2015, magistrsko delo

Opis: Organski sintetični polimeri so najštevilčnejša skupina polimerov. Mednje spadajo tudi poliHIPE materiali, ki so raziskovalcem zanimivi že vrsto let, saj jim njihove posebne lastnosti –kot je poroznost– omogočajo uporabo na številnih področjih. Eno teh je tkivno inženirstvo (TI), kjer poliHIPE materiali nastopajo kot nosilci za naselitev, rast in razmnoževanje celic, ki prerastejo v tkivo ali cel organ. S takšnim biološkim nadomestkom lahko zamenjamo poškodovana ali manjkajoča tkiva ter organe. Namen tega magistrskega dela je bila sinteza treh poliHIPE materialov: tiolnega poliestra iz tetrakis(3-merkaptopropionata)-co-trimetilolpropan triakrilata (TT-co-TMPTA) v molskem razmerju 3:4, vinilnega poliestra poli(glicerol sebacat akrilata) (PGSA) ter glikolnega poliestra poli(etilen glikol) metil eter metakrilata (PEGMA). Brez težav smo TT-co-TMPTA polimerizirali v masi. Uspešno smo pripravili poliHIPE iz TT-co-TMPTA in dokazali, da je razgradljiv v šibko alkalnih medijih (0,05 M NaOH) ter raztopini PBS pufra. Sinteza PGSA nam ni uspela; pri sintezi predpolimera poli(glicerol sebacata) je prišlo do prevelikega zamreženja, saj so reagirale vse tri glicerolne hidroksilne skupine in tako nadaljnja akrilacija ni mogla poteči. Zato smo poskusili z zaščito hidroksilnih skupin v glicerolu in tako sintetizirali solketal, le-tega akrilirali in ga tudi v masi polimerizirali ter dobili poli(solketal akrilat) (PSA). Tega smo prav tako skušali sintetizirati kot poliHIPE, a smo bili neuspešni, tako kot tudi pri poliHIPE-u iz PEGMA. V magistrskem delu so predstavljene teoretske osnove reakcij polimerizacije, priprave poliHIPE materialov, metod za njihovo karakterizacijo ter tkivno inženirstvo, podrobni opisi sintez ter zbrani rezultati z razlago.
Ključne besede: poliHIPE, TT-co-TMPTA, solketal akrilat, poliPEGMA, tkivno inženirstvo, FTIR, NMR
Objavljeno: 26.06.2015; Ogledov: 832; Prenosov: 117
.pdf Celotno besedilo (3,62 MB)

17.
VPLIV KEMIJSKE IN MORFOLOŠKE STRUKTURE POROZNIH POLIMETAKRILATOV NA VEZAVO BIOLOŠKIH MAKROMOLEKUL
Sebastjan Huš, 2015, doktorska disertacija

Opis: V okviru doktorske disertacije smo preučevali vpliv različnih parametrov na morfološke lastnosti visoko poroznih metakrilatnih polimerov, pripravljenih s polimerizacijo emulzij z visokim deležem notranje faze. Variirali smo vrsto iniciatorja, delež surfaktanta, delež notranje faze, razmerje med monomeri, hitrost in temperaturo mešanja ter s tem velikost por uspeli kontrolirano optimirati od submikronske pa vse do 90µm. Poleg morfologije smo optimirali tudi mehanske lastnosti, ki so pri visoko poroznih materialih zelo pomembne. Najbolj raziskan in uporabljen sistem za poliHIPE materiale je na osnovi stirena, zamrežen z divinilbenzenom in glede na to, da ima poli(metil metakrilat) že v osnovi boljše mehanske lastnosti kot polistiren, smo podobno izboljšanje pričakovali tudi pri samih poliHIPE materialih. V kombinaciji z uporabo namiznega mešala in daljšega časa mešanja, smo pripravili porozen material s hierarhično porazdelitvijo por, kateri ima pri 75 % poroznosti upogibni modul elastičnosti 211 MPa, kar je najvišji E-modul za poliHIPE materiale s primerljivo poroznostjo. V drugem delu smo pripravili porozne polIHIPE materiale na osnovi glicidil metakrilata, zamrežene z etilenglikol dimetakrilatom. Glicidil metakrilat je zanimiv, ker vsebuje za nukleofile reaktivno epoksi skupino, ki je primerna za neposredno funkcionalizacijo. Z variiranjem vrste iniciatorja, deleža surfaktanta, deleža notranje faze, razmerja med monomeroma ter hitrosti in temperature mešanja smo uspešno optimirali morfologijo, ki je bila primerna za nadaljnjo funkcionalizacijo. Žilavost materiala, ki je zelo pomembna v pretočnih sistemih, pa smo zopet uspeli izboljšati z dodatkom metil metakrilata. Pripravili smo tudi nosilce na osnovi glicidil metakrilatnih poliHIPE materialov, na katere smo z nukleofilno adicijo, preko aminskih skupin uspešno imobilizirali encim glukoza oksidaza in nosilec uporabili za modelno reakcijo oksidacije glukoze v glukonsko kislino. Aktivnost pripravljenega nosilca z vezanim encimom smo določali na FIA sistemu in kot rezultat dobili graf površine v odvisnosti od časa v obliki linearne premic, s čimer smo dokazali uspešnost imobilizacije. V zadnjem delu smo pripravljene poliHIPE materiale funkcionalizirali z različnimi tioli in funkcionalne polimere uporabili za vezavo težkih kovin srebra, svinca in kadmija iz vode. Prav tako smo vezavo težkih kovin izvedli z realnim vzorcem kontaminirane vode. Z materialom, funkcionaliziranim s pentaeritrol tetrakis (3-merkaptopropionatom), smo uspeli odstraniti 89,6 % Ag+ ionov ter 48,2 % Pb2+ ionov. Z materialom, funkcionaliziranim z 1,9-nonanditiolom pa smo uspeli odstraniti 82,3 % Ag+ ionov in 8 % Pb2+ ionov. Cd2+ ione smo na površino funkcionalnih poliHIPE materialov uspeli le adsorbirati, vendar so se ti s časom iz materiala sprali. Podobno smo pri vezavi nizkih koncentracij kovinskih ionov iz realnega vzorca, z materialom, funkcionaliziranem s pentaeritrol tetrakis (3-merkaptopropionatom), uspeli odstraniti veliko večino srebrovih ionov, z materialom, funkcionaliziranem z 1,9-nonanditiolom pa večino srebrovih in kadmijevih ionov. Rezultati dokazujejo, da so funkcionalni nosilci primerni predvsem za selektivno odstranjevanje srebrovih ionov iz kontaminirane vode.
Ključne besede: polimeri, poroznost, poliHIPE, glicidil metakrilat, metil metakrilat, mehanske lastnosti, funkcionalizacija
Objavljeno: 14.07.2015; Ogledov: 880; Prenosov: 206
.pdf Celotno besedilo (51,24 MB)

18.
Vpliv morfoloških značilnosti poroznih polimetilmetakrilatov na fizikalne lastnosti
Nika Krampl, 2015, diplomsko delo

Opis: V diplomski nalogi smo se osredotočili na vpliv morfoloških značilnosti poroznih polimetilmetakrilatov na njihove fizikalne lastnosti. Polimerni monoliti so bili pripravljeni s polimerizacijo kontinuirne faze emulzije z visokim deležem notranje faze, polimerizacijo v masi in sonokemično. Polimerizacijo v masi dobimo tako, da v čaši zmešamo zamreževalo, monomer in porogen ter na koncu dodamo še radikalski iniciator, ki je bil α,α'-azoizobutironitril. Uporabljena monomera sta bila glicidil metakrilat in metil metakrilat, kot zamreževalo pa smo uporabili etilenglikol dimetakrilat. Potrebno je bilo poiskati primeren porogen; najustreznejša sta bila cikloheksanol in izopropanol. Polimerizacija je potekla v kalupu pri temperaturi 55 °C. Pri polimerizaciji kontinuirne faze emulzije z visokim deležem notranje faze smo polimerizirali emulzijo, ki je vsebovala monomere, iniciator in surfaktant. Uporabljena monomera in zamreževalo so bili enaki kot pri polimerizaciji v masi. Uporabljeni surfaktant je bil PEL 121. Kot radikalski iniciator smo uporabili kombinacijo kalijevega persulfata in N,N,N',N'-tetrametil-etan-1,2-diamina. Polimerizirali smo v kalupu pri temperaturi 40 °C. Pri sonokemiji je bil postopek sestavljen iz priprave HIP emulzije, katero smo ultrasonificirali in jo nato polimerizirali v kalupu pri temperaturi 45 °C. Tako pripravljene polimerne monolite je bilo potrebno očistiti v primernem topilu. Z vrstičnim elektronskim mikroskopom smo preverili njihove strukture. Z infrardečo spektroskopijo smo potrdili njihovo kemijsko strukturo. Njihovo specifično površino smo določili z adsorpcijsko/desorpcijsko porozimetrijo (BET metodo). Nato smo jih poslali še na testiranje fizikalnih lastnosti, kjer smo testirali stisljivost in nateznost. Opazili smo, da se je struktura spreminjala, tako smo dobili največje dimenzije por polimernih monolitov pri polimerizaciji kontinuirne faze HIP emulzije, sledila je polimerizacija v masi in nazadnje priprava polimernih monolitov z uporabo ultrazvoka. Spreminjala se je tudi specifična površina. Največja je bila pri monolitu poliHIPE, najmanjša pa pri monolitu pripravljenem s polimerizacijo v masi. Prav tako so se spreminjale tudi fizikalne lastnosti polimernih materialov, kar je posledica spreminjanja strukture (velikosti in porazdelitve por).
Ključne besede: polimeri, poliHIPE, miniemulzija, velikost por, monoliti, polimerizacija v masi, metil metakrilat, fizikalne lastnosti
Objavljeno: 29.10.2015; Ogledov: 1112; Prenosov: 93
.pdf Celotno besedilo (6,96 MB)

19.
POROZNI HIBRIDNI MATERIALI IZ SISTEMA MONOMER/TiO 2
Amadeja Koler, 2015, magistrsko delo

Opis: V magistrskem delu smo se lotili sinteze poroznega hibridnega materiala sestavljenega iz sistema monomer-propoksiliran trimetitol propan triakrilat in delcev TiO2. Hibridni material smo pripravili s polimerizacijo emulzije z visokim deležem notranje faze tipa voda v olju, kateri smo v zunanjo fazo primešali delce TiO2 . Hibridni material smo nato sintrali. Ugotovili smo, da na stabilnost emulzije ne vpliva narava in količina dodanega surfaktanta PEL 121 ampak emulzijo stabilizira le disperzno sredstvo BYK 118. Prav tako smo iz eksperimentalnega dela ugotovili, da na stabilizacijo emulzije vpliva masno razmerje delci:monomer. Kadar smo v emulzijo dodali dvakrat več monomera kot delcev, je bila ta stabilna tudi po dodatku 80 vol.% vodne faze, material je imel odprto celično strukturo. Z višanjem količine delcev (delci:monomer na 1:1, 2:1) pa emulzije pri dodatkih visokih deležev vodne faze (več kot 70 vol.%) postajajo vedno manj stabilne njihova celična struktura pa je bolj zaprta. Pomemben dejavnik za stabilizacijo sistema monomer-TiO2 je tudi velikost delcev. Ugotovili smo, da z delci velikosti 20 nm težje stabiliziramo HIP emulzijo, kot pa z delci velikosti 200 nm. Dobljene porozne hibridne materiale smo nato sintrali na temperaturi 1150 ⁰C pri temperaturnem koraku 0,5 ⁰C na minuto. Izkazalo se je, da se hibridnim materialom z nižjim deležem delcev tipična poliHIPE struktura poruši. Medtem, ko pa se tistim materialom z višjim deležem delcev (delci:monomer 2:1) struktura poruši verjetno zaradi že predhodno manj stabilnega hibridnega materiala. Vsi sintrani materiali so izboljšali svoje mehanske lastnosti, saj so vsi postali trdnejši . Struktura je ostala podobna poliHIPE materialu kadar smo dodajali manjšo količino delcev glede na monomer in kadar smo dodajali nižje vsebnosti notranje faze (manj kot 80 vol.%). V tem delu smo sintetizirali hibridni material iz sistema monomer-TiO2, nadalje smo ga sintrali in tako bolj ali manj uspešno dobili porozno keramično matrico, katere morfologija je nakazovala podobnost s hibridnim materialom. Tako delo še v znanstveni literaturi ni bilo opisano.
Ključne besede: poliHIPE, hibridni materiali, titanov dioksid, stabilizacija HIP emulzij, sintranje
Objavljeno: 02.11.2015; Ogledov: 952; Prenosov: 117
.pdf Celotno besedilo (3,31 MB)

20.
Mehanske lastnosti hiperzamreženih polimerov
Mateja Švajger, 2016, diplomsko delo

Opis: V diplomskem delu smo želeli preučiti ali vpliva naknadno zamreženje oz. hiperzamreženje poli (stiren-ko-divinilbenzena) na mehanske lastnosti polimernih struktur. Pripravili smo HIP emulzije, pri katerih smo uporabili monomera stiren in divinilbenzen, pri čemer je divinilbenezen služil kot zamreževalo, z različno stopnjo zamreženosti. Dobljenemu poliHIPE materialu smo z adsorpcijo/desorpcijo dušika po BET metodi izmerili specifično površino. Ugotovili smo, da stopnja zamreženja ni bistveno vplivala na specifično površino materiala, najvišja razlika je pri vzorcu MS17, ki je bil 40 mol % zamrežen in MS22, ki je bil 80 mol % zamrežen, kar pomeni, da je vseboval samo zamreževalo. S pomočjo FTIR spektrov smo potrdili kemijsko sestavo pripravljenih polimernih monolitov. Morfologijo smo preverili z vrstično elektronsko mikroskopijo. Monolite smo hiperzamrežili, za reakcijo hiperzamreženja smo izbrali di-tert-butil peroksid kot iniciator radikalske polimerizacije preostalih vinilnih skupin, kot topilo smo uporabili toluen. Tudi tem vzorcem smo z adsorpcijo/desorpcijo dusika po BET metodi izmerili specifično površino. Ugotovili smo, da ja naknadno zamreženje vplivalo na povečanje specifične površine materiala. Specifična površina se je največ povečala pri vzorcu MS22 in sicer iz 73,7 m2g-1 na 195,7 m2g-1 in s tem ima najvišji faktor povečanja specifične površine vrednost 2,65. Vzorcema MS17 in MS22 smo pred in po zamreženjem določili mehanske lastnosti po tritočkovnem upogibnem testu. Ugotovili smo, da so se mehanske lastnosti, elastičnost in raztezek ohranile.
Ključne besede: Polimer, polimerizacija, emulzija, poliHIPE materiali, hiperzamreženje, zamreženi polimeri, odprta celična struktura, mehanske lastnosti polimerov.
Objavljeno: 26.09.2016; Ogledov: 979; Prenosov: 64
.pdf Celotno besedilo (2,92 MB)

Iskanje izvedeno v 0.26 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici