| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 1 / 1
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
The numerical analysis of flame stability in case of premixed hydrogen-air combustion
Marc Jaeger, Matjaž Hriberšek, Niko Samec, Yang Guo, Xuebin Wang, Filip Kokalj, 2025, izvirni znanstveni članek

Opis: This study addresses the urgent need for decarbonization of heating sector, focusing on the potential of hydrogen-air combustion in gas condensing boilers. In the field of gas condensing boilers, groups of holes or slits can be used in perforated burner surfaces, providing a possible solution to the challenge of hydrogen air combustion. Real burners are always adjacent to an area with non-existent combustion, which can lead to a disturbed flame pattern. For this reason, a comparison between single-slit and multi-slit perforated flame holders with a significantly reduced structure temperature with a hydrogen-air premix is carried out as part of this study. Using Ansys Fluent, a 2D simulation approach is employed to analyze laminar flame stability behind a perforated flame holder. Inlet conditions consider fully premixed and homogenous distributed mixtures as well as nonhomogeneous premixed mixtures, with variations in pressure, velocity, and mixing degree. The model examines various slit-burner configurations and flashback behaviors based on an actual geometric shape used in a gas heating device. It has been found that with finite multi-slit burners, the bulk flow rates at the critical flashback point are 30–50% higher compared to infinitely symmetrical burners. A further deterioration of 32% is to be expected due to real mixture quality fluctuations and inhomogeneous inflow conditions. Finally, the findings demonstrate the model’s potential for designing efficient surface-stabilized burners and lay the groundwork for future 3D simulations in the pursuit of sustainable heating solutions.
Ključne besede: hydrogen combustion, flashback, flame stability, perforated flame holder, gas condensing boiler
Objavljeno v DKUM: 19.05.2025; Ogledov: 0; Prenosov: 6
.pdf Celotno besedilo (6,29 MB)
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.01 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici