| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 2 / 2
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Cellulose nanofibrils-reinforced pectin membranes for the adsorption of cationic dyes from a model solution
Alenka Ojstršek, Selestina Gorgieva, 2024, izvirni znanstveni članek

Opis: In the presented research, a facile, one-step method for the fabrication of cellulose nanofibrils/pectin (CNFs/PC) membranes is described, which were tested further for their ability to remove cationic dyes from the prepared model solutions. For this purpose, ten membranes were prepared with different quantities of CNFs and PC with/without citric acid (CA) or CaCl2 as mediated crosslinking agents, and they were characterised comprehensively in terms of their physical, chemical, and hydrophilic properties. All the prepared CNFs/PC membranes were hydrophilic with a Water Contact Angle (WCA) from 51.23◦ (without crosslinker) up to 78.30◦ (CaCl2 ) and swelling of up to 485% (without crosslinker), up to 437% (CaCl2 ) and up to 270% (CA). The stability of membranes was decreased with the increase in PC; thus, only four membranes (M1, M2, M3 and M5) were stable enough in water after 24 h, and these were additionally applied in the adsorption trials, using two structurally different cationic dyes, i.e., C.I. Basic Yellow 28 (BY28) and C.I. Basic Blue 22 (BB22), in four concentrations. The highest total surface charge of M3 (2.83 mmol/g) as compared to the other membranes influenced the maximal removal efficiency of both dyes, up to 37% (BY28) and up to 71% (BB22), depending on the initial dye concentration. The final characteristics of the membranes and, consequently, the dye’s absorption ability could be tuned easily by changing the ratio between the CNFs and PC, as well as the type and amount of crosslinker.
Ključne besede: cellulose nanofibrils, pectin, cationic dyes, adsorption, dye removal
Objavljeno v DKUM: 12.03.2024; Ogledov: 320; Prenosov: 18
.pdf Celotno besedilo (5,33 MB)
Gradivo ima več datotek! Več...

2.
Hybrid polylactic-acid–pectin aerogels : synthesis, structural properties, and drug release
Gabrijela Horvat, Klara Žvab, Željko Knez, Zoran Novak, 2023, izvirni znanstveni članek

Opis: Wound-dressing materials often include other materials stimulating wound healing. This research describes the first formulation of biodegradable hybrid aerogels composed of polylactic acid and pectin. The prepared hybrid material showed a highly porous structure with a surface area of 166 +/- 22.6 m(2)center dot g(-1). The addition of polylactic acid may have decreased the surface area of the pure pectin aerogel, but it improved the stability of the material in simulated body fluid (SBF). The pure pectin aerogel showed a high swelling and degradation ratio after 3 h. The addition of the polylactic acid prolonged its stability in the simulated body fluid from 24 h to more than one week, depending on the amount of polylactic acid. Biodegradable aerogels were loaded with indomethacin and diclofenac sodium as model drugs. The entrapment efficiencies were 63.4% and 62.6% for indomethacin and diclofenac sodium, respectively. Dissolution of both drugs was prolonged up to 2 days. Finally, sodium percarbonate and calcium peroxide were incorporated into the bioaerogels as chemical oxygen sources, to evaluate oxygen generation for potential wound healing applications.
Ključne besede: hybrid aerogels, bioaerogel, pectin, polylactic acid, wound healing
Objavljeno v DKUM: 20.02.2024; Ogledov: 357; Prenosov: 24
.pdf Celotno besedilo (2,62 MB)
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.06 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici