| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 3 / 3
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Okrepitveno učenje agentov za igranje iger v pogonu Unity
Jan Banko, 2021, magistrsko delo

Opis: V magistrskem delu obravnavamo algoritme okrepitvenega učenja na primeru igranja računalniških iger. Namen magistrskega dela je implementacija igre v okolju Unity in analiza učinkovitosti algoritmov okrepitvenega učenja računalniškega igralca. Opisane so teoretične osnove okrepitvenega učenja, podrobneje pa so predstavljeni algoritmi PPO (angl. Proximal Policy Optimization), SAC (angl. Soft Actor Critic) in DQN (angl. Deep Q-Network), ki so uporabljeni v končni analizi. Rezultati so pokazali, da je bilo učenje agenta v celoti gledano uspešno. V testnem okolju se je najbolje odrezal algoritem PPO, z uporabo katerega je naučen agent v povprečju dosegal 86,4% maksimalne možne nagrade, najslabše pa algoritem DQN, ki ni primeren za uporabo v implementiranem testnem okolju.
Ključne besede: okrepitveno učenje, računalniške igre, Unity, agent, strojno učenje
Objavljeno: 17.06.2021; Ogledov: 38; Prenosov: 7
.pdf Celotno besedilo (1,04 MB)

2.
Strojno učenje računalniškega igralca v igri Havannah
Nino Serec, 2020, diplomsko delo

Opis: V zadnjih letih je bil na področju umetne inteligence z uporabo okrepitvenega učenja nevronskih mrež dosežen preboj pri sposobnostih računalnika za igranje iger na deski, kot je Go, pri katerih je bil človek doslej močnejši nasprotnik. V diplomskem delu raziščemo algoritem igranja iger AlphaZero, ki kombinira tehnike preiskovanja dreves Monte Carlo in okrepitvenega učenja nevronskih mrež. Algoritem začne brez posebnega predznanja o dobrih strategijah, vendar se moč algoritma s postopkom učenja, ki se ponavlja iterativno, konstantno povečuje. V diplomskem delu opišemo in implementiramo osnovno obliko AlphaZero za igranje igre Havannah. Naučimo več različic modela nevronskih mrež, kjer vsak naslednik premaga svojega prednika in postane prvak. S tem pokažemo, da se lahko računalniški igralec uči igranja igre Havannah samo s podanimi pravili igre, tako da je sposoben premagati povprečnega človeškega igralca.
Ključne besede: igra Havannah, drevesno preiskovanje Monte Carlo, nevronske mreže, okrepitveno učenje, tabula rasa
Objavljeno: 11.11.2020; Ogledov: 228; Prenosov: 43
.pdf Celotno besedilo (1,29 MB)

3.
Trgovanje kriptovalut z okrepitvenim učenjem
Gašper Reher, 2020, diplomsko delo

Opis: V diplomskem delu se bom seznanil in preizkusil okrepitveno učenje na časovnih podatkih, natančneje na trgovanju s kriptovalutami. V okviru naloge bom naredil teoretičen pregled okrepitvenega učenja, ogrodji okrepitvenega učenja in pregled knjižnic, ki že obstajajo na področju okrepitvenega učenja ter trgovanja s kriptovalutami. Praktični cilj diplomskega dela pa je izdelava programa, ki se bo na podlagi zgodovinskih vrednosti kriptovalut, naučil, kako trgovati z njimi, tako da zagotovi velik dobiček.
Ključne besede: Okrepitveno učenje, kriptovalute, Python, umetna inteligenca
Objavljeno: 03.11.2020; Ogledov: 188; Prenosov: 72
.pdf Celotno besedilo (1,66 MB)
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.1 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici