| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 2 / 2
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
2.
Sistem za avtomatizirano ocenjevanje časovnih okvirjev implementacije funkcionalnosti pri pripravi ponudb
Rok Novak, 2018, magistrsko delo

Opis: V magistrski nalogi predstavljamo spletno aplikacijo, ki s pomočjo metod strojnega učenja napoveduje predvidene časovne okvirje posameznih funkcionalnosti pri pripravi ponudb za stranke podjetja. Aplikacija rešuje problem z regresijo in za napovedovanje uporablja tri različne algoritme, in sicer linearno regresijo, k-najbližjih sosedov in metodo podpornih vektorjev. Algoritmi modele naučijo na osnovi že dokončanih časovnih okvirjev. Ob vsakem novem podatku, ki ustreza pogojem, da ga uvrstimo v učno množico, se modeli na novo naučijo. Algoritme smo med seboj primerjali s tremi merami uspešnosti. To so koren srednje kvadratne napake, srednja absolutna napaka in korelacijski koeficient. Raziskovali smo hipotezo, da lahko s strojnim učenjem napovemo podobne ocene, kot jih je podal človek. Izmed izbranih algoritmov je najbolj natančne rezultate podala metoda podpornih vektorjev. S primerjavo mer uspešnosti in odstopanj med napovedmi modelov algoritmov in človeka smo prišli do zaključka, da lahko našo hipotezo potrdimo. Rezultati so pokazali, da so modeli algoritmov podali dovolj natančne ocene, saj napake pri napovedi ne bi imele neposrednega vpliva na izvedbo projekta.
Ključne besede: priprava ponudb, ocenjevanje časovnih okvirjev, strojno učenje, regresija
Objavljeno: 26.06.2018; Ogledov: 207; Prenosov: 35
.pdf Celotno besedilo (2,09 MB)

Iskanje izvedeno v 0.04 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici