| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 10 / 11
Na začetekNa prejšnjo stran12Na naslednjo stranNa konec
1.
The dynamics of human gait
Matjaž Perc, 2005, izvirni znanstveni članek

Opis: We analyse the dynamics of human gait with simple nonlinear time series analysis methods that are appropriate for undergraduate courses. We show that short continuous recordings of the human locomotory apparatus possess properties typical of deterministic chaotic systems. To facilitate interest and enable the reproduction of presented results, as well as to promote applications of nonlinear time series analysis to other experimental systems, we provide user-friendly programs for each implemented method. Thus, we provide new insights into the dynamics of human locomotion, and make an effort to ease the inclusion of nonlinear time series analysis methods into the curriculum at an early stage of the educational process.
Ključne besede: dynamic systems, chaotic systems, nonlinear dynamics, human gait, human locomotion
Objavljeno: 01.06.2012; Ogledov: 1050; Prenosov: 21
URL Povezava na celotno besedilo

2.
Encyclopedia of complexity and systems science
slovar, enciklopedija, leksikon, priročnik, atlas, zemljevid

Opis: Encyclopedia of Complexity and Systems Science provides an authoritative single source for understanding and applying the concepts of complexity theory together with the tools and measures for analyzing complex systems in all fields of science and engineering. The science and tools of complexity and systems science include theories of self-organization, complex systems, synergetics, dynamical systems, turbulence, catastrophes, instabilities, nonlinearity, stochastic processes, chaos, neural networks, cellular automata, adaptive systems, and genetic algorithms. Examples of near-term problems and major unknowns that can be approached through complexity and systems science include: The structure, history and future of the universe; the biological basis of consciousness; the integration of genomics, proteomics and bioinformatics as systems biology; human longevity limits; the limits of computing; sustainability of life on earth; predictability, dynamics and extent of earthquakes, hurricanes, tsunamis, and other natural disasters; the dynamics of turbulent flows; lasers or fluids in physics, microprocessor design; macromolecular assembly in chemistry and biophysics; brain functions in cognitive neuroscience; climate change; ecosystem management; traffic management; and business cycles. All these seemingly quite different kinds of structure formation have a number of important features and underlying structures in common. These deep structural similarities can be exploited to transfer analytical methods and understanding from one field to another. This unique work will extend the influence of complexity and system science to a much wider audience than has been possible to date.
Ključne besede: cellular automata, complex networks, computational nanoscience, ecological complexity, ergodic theory, fractals, game theory, granular computing, graph theory, intelligent systems, perturbation theory, quantum information science, system dynamics, traffic management, chaos, climate modelling, complex systems, dynamical sistems, fuzzy theory systems, nonlinear systems, soft computing, stochastic processes, synergetics, self-organization, systems biology, systems science
Objavljeno: 01.06.2012; Ogledov: 1464; Prenosov: 61
URL Povezava na celotno besedilo

3.
Transition from Gaussian to Levy distributions of stochastic payoff variations in the spatial prisoner's dilemma game
Matjaž Perc, 2007, izvirni znanstveni članek

Opis: We study the impact of stochastic payoff variations with different distributions on the evolution of cooperation in the spatial prisoner's dilemma game. We find that Gaussian-distributed payoff variations are most successful in promoting cooperation irrespective of the temptation to defect. In particular, the facilitative effect of noise on the evolution of cooperation decreases steadily as the frequency of rare events increases. Findings are explained via an analysis of local payoff ranking violations. The relevance of results for economics and sociology is discussed.
Ključne besede: stochastic systems, spatial resonance, stochastic payoff variations, nonlinear systems, noise, spatial dynamics, mathematical models, prisoner's dilemma
Objavljeno: 07.06.2012; Ogledov: 1088; Prenosov: 50
URL Povezava na celotno besedilo

4.
Proximity to periodic windows in bifurcation diagrams as a gateway to coherence resonance in chaotic systems
Marko Gosak, Matjaž Perc, 2007, izvirni znanstveni članek

Opis: We show that chaotic states situated in the proximity of periodic windows in bifurcation diagrams are eligible for the observation of coherence resonance. In particular, additive Gaussian noise of appropriate intensity can enhance the temporal order in such chaotic states in a resonant manner. Results obtained for the logistic map and the Lorenz equations suggest that the presented mechanism of coherence resonance is valid beyond particularities of individual systems. We attribute the findings to the increasing attraction of imminent periodic orbits and the ability of noise to anticipate their existence and use a modified wavelet analysis to support our arguments.
Ključne besede: chaotic systems, spatial resonance, coherence resonance, nonlinear systems, noise, spatial dynamics, mathematical models, bifurcation diagrame
Objavljeno: 07.06.2012; Ogledov: 1273; Prenosov: 38
URL Povezava na celotno besedilo

5.
Thoughts out of noise
Matjaž Perc, 2006, izvirni znanstveni članek

Opis: We study the effects of additive Gaussian noise on the behaviour of a simple spatially extended system, which is locally modelled by a nonlinear two-dimensional iterated map describing neuronal dynamics. In particular, we focus on the ability of noise to induce spatially ordered patterns, i. e. the so-called noise-induced pattern formation. For intermediate noise intensities, the spatially extended system exhibits ordered circular waves, thereby clearly manifesting the constructive role of random perturbations. The emergence of observed noise-induced patterns is explained with simple arguments that are obtained by analysing the typical spatial scale of patterns evoked by various diffusion coefficients. Since discrete-time systems are straightforward to implement and require modest computational capabilities, the present study describes one of the most fascinating and visually compelling examples of noise-induced self-organization in nonlinear systems in an accessible way for graduate or even advanced undergraduate students attending a nonlinear dynamics course.
Ključne besede: dynamic systems, chaotic systems, nonlinear dynamics, nonlinear systems, noise, nonlinear analyses
Objavljeno: 07.06.2012; Ogledov: 786; Prenosov: 18
URL Povezava na celotno besedilo

6.
Visualizing the attraction of strange attractors
Matjaž Perc, 2005, strokovni članek

Opis: We describe a simple new method that provides instructive insights into the dynamics of chaotic time-continuous systems that yield strange attractors as solutions in the phase space. In particular, we show that the norm of the vector field component that is orthogonal to the trajectory is an excellent quantity for visualizing the attraction of strange attractors, thus promoting the understanding of their formation and overall structure. Furthermore, based on the existence of zero orthogonal field strengths in planes that form low-dimensional strange attractors, we also provide an innovative explanation for the origin of chaotic behaviour. For instructive purposes, we first apply the method to a simple limit cycle attractor, and then analyse two paradigmatic mathematical models for classical time-continuous chaos. To facilitate the use of our method in graduate as well as undergraduate courses, we also provide user-friendly programs in which the presented theory is implemented.
Ključne besede: dynamic systems, chaotic systems, nonlinear dynamics, attractors, strange attractors
Objavljeno: 07.06.2012; Ogledov: 833; Prenosov: 31
URL Povezava na celotno besedilo

7.
Nonlinear time series analysis of the human electrocardiogram
Matjaž Perc, 2005, strokovni članek

Opis: We analyse the human electrocardiogram with simple nonlinear time series analysis methods that are appropriate for graduate as well as undergraduate courses. In particular, attention is devoted to the notions of determinism and stationarity in physiological data. We emphasize that methods of nonlinear time series analysis can be successfully applied only if the studied data set originates from a deterministic stationary system. After positively establishing the presence of determinism and stationarity in the studied electrocardiogram, we calculate the maximal Lyapunov exponent, thus providing interesting insights into the dynamics of the human heart. Moreover, to facilitate interest and enable the integration of nonlinear time series analysis methods into the curriculum at an early stage of the educational process, we also provide user-friendly programs for each implemented method.
Ključne besede: dynamic systems, chaotic systems, nonlinear dynamics, electrocardiogram, human electrocardiogram, nonlinear analyses
Objavljeno: 07.06.2012; Ogledov: 1016; Prenosov: 40
URL Povezava na celotno besedilo

8.
Statistical Properties of Time-dependent Systems
Diego Fregolente Mendes De Oliveira, 2012, doktorska disertacija

Opis: In the dissertation I have dealt with time-dependent (nonautonomous) systems, the conservative (Hamiltonian) as well as dissipative, and investigated their dynamical and statistical properties. In conservative (Hamiltonian) time-dependent systems the energy is not conserved, whilst the Liouville theorem about the conservation of the phase space volume still applies. We are interested to know, whether the system can gain energy, and whether this energy can grow unbounded, up to infinity, and we are interested in the system's behaviour in the mean, as well as its statistical properties. An example of such a system goes back to the 1940s, when Fermi proposed the acceleration of cosmic rays (in the first place protons) upon the collisions with moving magnetic domains in the interstellar medium of our Galaxy, and in other galaxies. He then proposed a simple mechanical one-dimensional model, the so-called Fermi-Ulam Model (FUM), where a point particle is moving between two rigid walls, one being at rest and the other one oscillating. If the oscillation is periodic and smooth, it turned out in a nontrivial way, which is, in the modern era of understanding the chaotic dynamical systems, well understood, namely that the unbounded increasing of the energy (the so-called Fermi acceleration) is not possible, due to the barriers in form of invariant tori, which partition the phase space into regions, between which the transitions are not possible. The research has then been extended to other simple dyanamical systems, which have complex dynamics. The first was so-called bouncer model, in which a point particle bounces off the oscillating platform in a gravitational field. In this simple system the Fermi acceleration is possible. Later the research was directed towards two-dimensional billiard systems. It turned out that the Fermi acceleration is possible in all such systems, which are at least partially chaotic (of the mixed type), or even in a system that is integrable as static, namely in case of the elliptic billiard. (The circle billiard is an exception, because it is always integrable, as the angular momentum is conserved even in time-dependent case.) The study of time-dependent systems has developed strongly worldwide around the 1990s, in particular in 2000s, and became one of the central topics in nonlinear dynamics. It turned out, quite generally, but formal and implicit, in the sense of mathematical existence theorems, that in nonautonomous Hamilton systems the energy can grow unbounded, meaning that the system ``pumps" the energy from the environment with which it interacts. There are many open questions: how does the energy increase with time, in particular in the mean of some representative ensemble of initial conditions (typically the phase space of two-dimensional time-dependent billiards is four-dimensional.) It turned out that almost everywhere the power laws apply, empirically, based on the numerical calculations, but with various acceleration exponents. If the Fermi acceleration is not posssible, like e.g. in the FUM, due to the invariant tori, then after a certain time of acceleration stage the crossover into the regime of saturation takes place, whose characteristics also follow the power laws. One of the central themes in the dissertation is the study of these power laws, their critical exponents, analytical relationships among them, using the scaling analysis (Leonel, McClintock and Silva, Phys. Rev. Lett. 2004). Furthermore, the central theme is the question, what happens, if, in a nonautonomous Hamilton system which exhibits Fermi acceleration, we introduce dissipation, either at the collisions with the walls (collisional dissipation) or during the free motion (in-flight dissipation, due to the viscosity of the fluid or the drag force etc.). Dissipation typically transforms the periodic points into point attractors and chaotic components into chaotic attractors. The Fermi acceleration is always suppressed. We are interested in the phase portraits of
Ključne besede: nonlinear dynamics, dynamical systems, conservative and dissipative systems, time-dependent systems, Fermi acceleration, billiards, kicked systems, chaos, chaotic and periodic attractors, bifurcations, boundary crisis
Objavljeno: 19.09.2012; Ogledov: 1898; Prenosov: 72
.pdf Celotno besedilo (16,09 MB)

9.
10.
Gap junctions and epileptic seizures - two sides of the same coin?
Vladislav Volman, Matjaž Perc, Maxim Bazhenov, 2011, izvirni znanstveni članek

Opis: Electrical synapses (gap junctions) play a pivotal role in the synchronization of neuronal ensembles which also makes them likely agonists of pathological brain activity. Although large body of experimental data and theoretical considerations indicate that coupling neurons by electrical synapses promotes synchronous activity (and thus is potentially epileptogenic), some recent evidence questions the hypothesis of gap junctions being among purely epileptogenic factors. In particular, an expression of inter-neuronal gap junctions is often found to be higher after the experimentally induced seizures than before. Here we used a computational modeling approach to address the role of neuronal gap junctions in shaping the stability of a network to perturbations that are often associated with the onset of epileptic seizures. We show that under some circumstances, the addition of gap junctions can increase the dynamical stability of a network and thus suppress the collective electrical activity associated with seizures. This implies that the experimentally observed post-seizure additions of gap junctions could serve to prevent further escalations, suggesting furthermore that they are a consequence of an adaptive response of the neuronal network to the pathological activity. However, if the seizures are strong and persistent, our model predicts the existence of a critical tipping point after which additional gap junctions no longer suppress but strongly facilitate the escalation of epileptic seizures. Our results thus reveal a complex role of electrical coupling in relation to epileptiform events. Which dynamic scenario (seizure suppression or seizure escalation) is ultimately adopted by the network depends critically on the strength and duration of seizures, in turn emphasizing the importance of temporal and causal aspects when linking gap junctions with epilepsy.
Ključne besede: epilepsy, nonlinear dynamics, electrical synapses, coupling, synchronization
Objavljeno: 19.06.2017; Ogledov: 236; Prenosov: 169
.pdf Celotno besedilo (858,25 KB)
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.31 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici