| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 10 / 28
Na začetekNa prejšnjo stran123Na naslednjo stranNa konec
1.
2.
Ionic hydraulic fluids and seal-material compatibility
Darko Lovrec, Roland Kalb, Vito Tič, 2024, izvirni znanstveni članek

Opis: Manufacturers of hydraulic fluids invest a lot of effort and resources in improving their physico-chemical properties, with the goal of getting as close as possible to the properties of an ideal hydraulic fluid. It should be non- flammable, environmentally friendly, sustainable and should have excellent physical and chemical properties. After decades of development in the field of ionic liquids and the search for an ionic liquid suitable for use in hydraulic systems, ionic hydraulic liquids are now already in industrial use, especially on devices that operate in harsh and risky operating conditions. Since ionic hydraulic fluids are a completely new type of hydraulic fluid, one of the issues is their compatibility with the materials present in the hydraulic components, including all the seals. This paper refers to the process of testing the compatibility of hydraulic seal materials with different types of ionic hydraulic fluids according to the standardized percentages and recommendations, with emphasis on changes in the swell, shrinkage and hardness of the seals. The presented results are a useful guide for selecting suitable seal materials in case of using high-tech ionic hydraulic fluids.
Ključne besede: ionic hydraulic fluids, seal material, compatibility, fluid-testing method, test results
Objavljeno v DKUM: 19.03.2024; Ogledov: 218; Prenosov: 8
.pdf Celotno besedilo (970,22 KB)
Gradivo ima več datotek! Več...

3.
Sustainable processing of materials using supercritical fluids : doktorska disertacija
Dragana Borjan, 2022, doktorska disertacija

Opis: Supercritical fluids (SCFs) are powerful solvents with many unique properties. They have great potential for many processes, from extraction to chemical reactions and recycling. Accordingly, phase equilibrium data and thermodynamic and transport properties measurements in systems with a supercritical phase, as well as reliable and versatile mathematical models of the phase equilibrium thermodynamics, are needed for the process design and economic feasibility studies. The dissertation focuses on the benefits of supercritical fluid technology and consists of three main sections. The first section includes studies of the phase equilibria of the binary gas-alcohol and gas-urea derivatives. The influence of pressure and temperature on the system behaviour (solubility, viscosity, density, interfacial tension, melting point curve) was investigated. Most of the experiments were carried out with a high-pressure optical view cell, with minor modifications of the apparatus and measurement principle to determine mentioned thermodynamic and transport properties. The second part of the dissertation deals with the recovery of extracts from natural materials. Special interest is oriented towards supercritical fluid extracts, characterised by strong biological activities, especially antimicrobial and antioxidant properties. Supercritical fluid extraction has been performed on a semi-continuous apparatus (at pressures of 150 bar and 250 bar and temperatures of 313.15 K and 333.15 K for oregano extraction; and at pressures of 100 bar and 300 bar and temperatures of 313.15 K and 333.15 K for red beetroot extraction) and various methods such as the microdilution method and the DPPH method were used to determine antimicrobial and antioxidant activity. In the third part, an overview of different methods for recycling carbon fibre reinforced composites is given, including chemical recycling with supercritical fluids. This field has not been well explored, and the approach is relatively new but very interesting from a sustainable point of view. For an economically feasible process design, the thermodynamic and mass transfer data have to be determined. The principles of the future lab- and pilot-scale operations demand these supporting data be known. The results obtained in the frame of this study represent the high added value in the scientific field. They are essential to design and modify processes that yield products that cannot be achieved with conventional production processes.
Ključne besede: supercritical fluids, alcohols, urea, phase equilibria, viscosity, density, interfacial tension, modified capillary method, isolation methods, supercritical fluid extraction, pharmacological activity, carbon fiber reinforced composites, recycling techniques
Objavljeno v DKUM: 11.10.2022; Ogledov: 919; Prenosov: 133
.pdf Celotno besedilo (4,64 MB)

4.
International Conference Fluid Power 2019 : Conference Proceedings
2019

Opis: The International Fluid Power Conference is a two day event, intended for all those professionally-involved with hydraulic or pneumatic power devices and for all those, wishing to be informed about the ‘state of the art’, new discoveries and innovations within the field of hydraulics and pneumatics. The gathering of experts at this conference in Maribor has been a tradition since 1995, and is organised by the Faculty of Mechanical Engineering at the University of Maribor, in Slovenia. Fluid Power conferences are organised every second year and cover those principal technical events within the field of fluid power technologies in Slovenia, and throughout this region of Europe. This year's conference is taking place on the 19th and 20th September in Maribor.
Ključne besede: fluid power technology, components and systems, control systems, fluids, maintenance and condition monitoring
Objavljeno v DKUM: 24.02.2020; Ogledov: 1296; Prenosov: 43
URL Povezava na datoteko

5.
High-Perssure process design for polymer treatment and heat transfer enhancement
Gregor Kravanja, 2018, doktorska disertacija

Opis: The doctoral thesis presents the design of several high-pressure processes involving »green solvents« so-called supercritical fluids for the eco-friendly and sustainable production of new products with special characteristics, fewer toxic residues, and low energy consumption. The thesis is divided into three main parts: polymer processing and formulation of active drugs, measurements of transport properties form pendant drop geometry, and study of heat transfer under supercritical conditions. In the first part, special attention is given to using biodegradable polymers in particle size reduction processes that are related to pharmaceutical applications for controlled drug release. The PGSSTM micronization process was applied to the biodegradable carrier materials polyoxyethylene stearyl ether (Brij 100 and Brij 50) and polyethylene glycol (PEG 4000) for the incorporation of the insoluble drugs nimodipine, fenofibrate, o-vanillin, and esomeprazole with the purpose of improving their bioavailability and dissolution rate. In order to optimize and design micronization process, preliminary transfer and thermodynamic experiments of water-soluble carriers (Brij and PEG)/ SCFs system were carried out. It was observed that a combination of process parameters, including particle size reduction and interactions between drugs and hydrophilic carriers, contributed to enhancing the dissolution rates of precipitated solid particles. In the second part, a new optimized experimental setup based on pendant drop tensiometry was developed and a mathematical model designed to fit the experimental data was used to determine the diffusion coefficients of binary systems at elevated pressures and temperatures. Droplet geometry was examined by using a precise computer algorithm that fits the Young–Laplace equation to the axisymmetric shape of a drop. The experimental procedure was validated by a comparison of the experimental data for the water-CO2 mixture with data from the literature. For the first time, interfacial tension of CO2 saturated solution with propylene glycol and diffusion coefficients of propylene glycol in supercritical CO2 at temperatures of 120°C and 150°C in a pressure range from 5 MPa, up to 17.5 MPa were measured. Additionally, the drop tensiometry method was applied for measuring systems that are of great importance in carbon sequestration related applications. The effect of argon as a co-contaminant in a CO2 stream on the interfacial tension, diffusion coefficients, and storage capacity was studied. In the third part, comprehensive investigation into the heat transfer performance of CO2, ethane and their azeotropic mixture at high pressures and temperatures was studied. A double pipe heat exchanger was developed and set up to study the effects of different operating parameters on heat transfer performance over a wide range of temperatures (25 °C to 90 °C) and pressures (5 MPa to 30 MPa). Heat flux of supercritical fluids was measured in the inner pipe in the counter-current with water in the outer pipe. For the first time, the heat transfer coefficients (HTC) of supercritical CO2, ethane and their azeotropic mixture in water loop have been measured and compared. A brief evaluation is provided of the effect of mass flux, heat flux, pressure, temperature and buoyancy force on heat transfer coefficients. Additionally, to properly evaluate the potential and the performance of azeotropic mixture CO2-ethane, the coefficients of performance (COP) were calculated for the heat pump working cycle and compared to a system containing exclusively CO2.
Ključne besede: supercritical fluids, PGSSTM, formulation of active drugs, biodegradable polymers, transport and thermodynamic data, pendant drop method, carbon sequestration, heat transfer coefficients
Objavljeno v DKUM: 28.05.2018; Ogledov: 1613; Prenosov: 222
.pdf Celotno besedilo (5,51 MB)

6.
International conference Fluid power 2017 : September 14th - 15th 2017, Maribor, Slovenia (conference proceedings)
2017, zbornik recenziranih znanstvenih prispevkov na mednarodni ali tuji konferenci

Opis: The International Fluid Power Conference is a two day event, intended for all those professionally-involved with hydraulic or pneumatic power devices and for all those, wishing to be informed about the ‘state of the art’, new discoveries and innovations within the field of hydraulics and pneumatics. The gathering of experts at this conference in Maribor has been a tradition since 1995, and is organised by the Faculty of Mechanical Engineering at the University of Maribor, in Slovenia. Fluid Power conferences are organised every second year and cover those principal technical events within the field of fluid power technologies in Slovenia, and throughout this region of Europe. This year's conference is taking place on the 14th and 15th September in Maribor. We wish all participants at the International Conference-Fluid Power 2017 continued successful professional work, and hope that we have yet again added another small piece within the mosaic of fluid power.
Ključne besede: fluid power technology, components and systems, control systems, fluids, maintenance, monitoring
Objavljeno v DKUM: 28.09.2017; Ogledov: 1524; Prenosov: 164
.pdf Celotno besedilo (19,00 MB)
Gradivo ima več datotek! Več...

7.
Sol-gel/Ag coating and oxygen plasma treatment effect on synthetic wound fluid sorption by non-woven cellulose material
Zdenka Peršin Fratnik, Tanja Pivec, Miran Mozetič, Karin Stana-Kleinschek, 2017, drugi znanstveni članki

Opis: Non-woven cellulose material was functionalized using two techniques, i.e. the coating with AgCl via sol-gel and oxygen plasma. The treatment effects were studied regarding the wound fluid adsorption potential using physiological saline, synthetic exudate and synthetic blood. Plasma treatment was most efficient since a significant improvement by absorbency rate and capacity was evident, less pronounced in case of synthetic blood. The combination of both treatments showed a similar trend, while the effects were less prominent, but still sufficient by managing fluid-associated as well as infected wounds.
Ključne besede: non-woven cellulose fabric, sol-gel, oxygen plasma, absorption, synthetic wound fluids
Objavljeno v DKUM: 31.08.2017; Ogledov: 1424; Prenosov: 391
.pdf Celotno besedilo (86,21 KB)
Gradivo ima več datotek! Več...

8.
OLEORESINI IZ RDEČE PEKOČE PAPRIKE - EKSTRAKCIJA IN UPORABA
Jana Simonovska, 2016, doktorska disertacija

Opis: Pepper (Capsicum annuum L.) as widely distributed vegetable crop in the world is an excellent source of nutritive and biologically active compounds. The characteristic compounds, capsaicinoids and carotenoids, highlight the importance of the red hot pepper varieties and their oleoresin extracts in the food and pharmaceutical industry. In the Ph.D. thesis was studied the possibility for a separate and integral utilization of the red hot pepper for obtaining the oleoresins from pericarp, placenta, seeds and stalk. Pre-treatment of the raw material (drying, separation of anatomical structures i.e. pericarp, placenta and seeds, and determination of theirs physico-chemical characteristics and determination of the he characteristic bioactive compounds: capsaicinoids, carotenoids and volatiles was studied, also. The second part of the Ph.D. thesis was focused of the determination of the optimal conditions for isolation of the bioactive capsaicinoids and coloured compounds, through comparative following of the thermodynamical parameters by application of organic solvents and supercritical fluids. Influence of the working parameters: temperature, time, pressure, solid to liquid phase ratio, density, type of solvents, and particle size of raw material on the yield of extract and content of capsaicinoids, colour compounds and volatiles was studied. Modelling of the experimental phase data by application of mathematical methods was performed. Re-utilization of seed and stalk from red hot pepper in form of extracts for development of new formulations as edible films, biopesticides and nanoemulsions was studied, also.
Ključne besede: red hot pepper, pericarp, placenta, seed, stalk, extraction, sub- and supercritical fluids, bioactive compounds, volatiles, re-utilization, edible films, biopesticides, nanoemulsions
Objavljeno v DKUM: 08.11.2016; Ogledov: 2167; Prenosov: 168
.pdf Celotno besedilo (4,71 MB)

9.
Supercritical fluid chromatography and scale up study
Miha Oman, Petra Kotnik, Mojca Škerget, Željko Knez, 2014, izvirni znanstveni članek

Opis: The influence of process parameters on supercritical fluid chromatography (SFC) and scale-up on to the preparative scale was investigated. In this scope, dependency of pressure, temperature, type and concentration of modifier, and type of stationary phase on the separation were examined separately. Experiments were performed on silica stationary phases in the range of pressures from 100 bar to 250 bar and temperatures from 30°C to 65°C, with use of ethanol and methanol as modifier. Results obtained on analytical scale were used for scale up on preparative (to production) scale. The aim of this study is presentation of the state-of-the-art of SFC through separate effects of process parameters on the separation and investigation of development, benefits and drawbacks of scaling-up process of the SFC.
Ključne besede: supercritical fluids, supercritical fluid chromatograpy, chromatography, scale up study, SFC
Objavljeno v DKUM: 21.12.2015; Ogledov: 1698; Prenosov: 161
.pdf Celotno besedilo (842,20 KB)
Gradivo ima več datotek! Več...

10.
Pressure stability of lipases and their use in different systems
Maja Leitgeb, Željko Knez, 2001, izvirni znanstveni članek

Opis: For the investigation of the solvent impact on the enzymes, lipases from different sources (Pseudomonas fluorescences, Rhizopus javanicus, Rhizopus niveus, Candida rugose and Porcine pancreas) were used. Stability and activity of these lipases in aqueous medium in supercritical $CO_2$ and liquid propane at 100 bar and 40°C were studied. On the basis of previous results lipases were used for their application in two different systems. The application of the polysulphone membrane in the continuous stirred tank membrane reactor was studied on the model system of the hydrolysis of oleyl oleate in propane at high pressure. As a catalyst the Candida rugosa lipase was used. The next utilization of lipases was the use of on silica arerogel self-immobilized lipase from Porcine pancreas as catalyst for esterification reaction in near-critical propane at 40°C and 100 bar.
Ključne besede: chemical processing, supercritical fluids, lipases, enzyme stability, high pressure membrane reactor
Objavljeno v DKUM: 10.07.2015; Ogledov: 1466; Prenosov: 189
.pdf Celotno besedilo (608,04 KB)
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.82 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici