| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 3 / 3
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Bioactive bacterial nanocellulose membranes for non-surgical debridement and infection prevention in burn wound healing
Urška Jančič, Isabella Nacu, Liliana Vereştiuc, Fiorenza Rancan, Selestina Gorgieva, 2025, izvirni znanstveni članek

Opis: Novel bioactive bacterial nanocellulose (BnC) membranes were developed for effective, non-surgical debridement and infection-prevention in burn wound healing. Membranes were modified in situ with carboxymethyl cellulose (CMC) and ex situ with the proteolytic enzyme bromelain (Br) and antimicrobial peptide nisin (N). Post-processing into stable cellulose nanocrystal dispersions (ζ = -26 mV), enables assembly of model films for demonstration of high, irreversible bromelain (95 %) and nisin (99.5 %) adsorption. The BnC-CMC and BnC-CMC-N membranes were in vitro cytocompatible for HaCaT cells and induced faster cell proliferation with cell viability exceeding 100 % after 24 h incubation. The innovative aspect of this study lies in the ex vivo evaluation using an advanced human skin explant model with induced burns, providing a realistic, physiologically relevant assessment of membrane performance. Ex vivo experiments indicated the cytocompatibility of the BnC-CMC membrane with no acute toxicity or skin irritation, while nisin presence resulted in moderate irritating effect. Notably, the BnC-CMC-Br membrane showed digestion of intercellular junctions in the epidermis, while not inducing acute toxicity and skin irritation. By leveraging this innovative ex vivo human skin model in novel BnC-based membranes testing, the study provides a crucial translational step, bridging in vitro assessments and clinical applications for burn wound treatment.
Ključne besede: bacterial nanocellulose, Bromelain, Nisin, Carboxymethyl cellulose, antimicrobial function, bioactive, burn wound treatment
Objavljeno v DKUM: 01.04.2025; Ogledov: 0; Prenosov: 6
.pdf Celotno besedilo (24,82 MB)
Gradivo ima več datotek! Več...

2.
Bromelain and nisin: The natural antimicrobials with high potential in biomedicine
Urška Jančič, Selestina Gorgieva, 2022, pregledni znanstveni članek

Opis: Infectious diseases along with various cancer types are among the most significant public health problems and the leading cause of death worldwide. The situation has become even more complex with the rapid development of multidrug-resistant microorganisms. New drugs are urgently needed to curb the increasing spread of diseases in humans and livestock. Promising candidates are natural antimicrobial peptides produced by bacteria, and therapeutic enzymes, extracted from medicinal plants. This review highlights the structure and properties of plant origin bromelain and antimicrobial peptide nisin, along with their mechanism of action, the immobilization strategies, and recent applications in the field of biomedicine. Future perspectives towards the commercialization of new biomedical products, including these important bioactive compounds, have been highlighted.
Ključne besede: bromelain, nisin, bioactivity, antimicrobial agent, biomedicine, carrier
Objavljeno v DKUM: 27.03.2025; Ogledov: 0; Prenosov: 1
.pdf Celotno besedilo (13,18 MB)
Gradivo ima več datotek! Več...

3.
Nisin-loaded gelatin microparticles for the enhanced bioactivity of bacterial nanocellulose
Maša Hren, Janja Trček, Aleksandra Šakanović, Hristina Obradović, Mateja Erdani-Kreft, Silvo Hribernik, Selestina Gorgieva, 2025, izvirni znanstveni članek

Opis: Bacterial nanocellulose (BnC) is of immense importance in medicine, although its lack of bioactivity present intriguing issue. We propose a method to modify BnC with gelatin and nisin biomolecules, and explore their synergistic effect on the antimicrobial activity. Gelatin microparticles (without/with nisin loading) with a size ~0.5 μm and ~ 1.3 μm were prepared by spray drying and stabilised by dehydrothermal treatment. Modified BnC-based membranes supported the formation of biologically relevant minerals and were non-cytotoxic to human gingival fibroblast cells (HGF). The presence of gelatin microparticles improved the viability of HGF by approximately 20 %, due to the effect of gelatin alone, independent of the addition of nisin. BnC coated with a nisin/gelatin solution reduces the viability of HGF by about 20 %, but this negative effect is not observed by nisin coated gelatin microparticles. The cell viability of BnC membranes was above 90 % in both porcine and human urothelial cells. The antimicrobial activity study confirmed an inhibitory effect of membranes modified with nisin-coated microparticles or a gelatin/nisin solution against Staphylococcus aureus at a non-cytotoxic nisin dose (150 μg/mL). The study demonstrates the structural effects of gelatin and gelatin/nisin mixtures on the bioactivity of BnC and provides a rationale for the modification procedure.
Ključne besede: bacterial nanocellulose, gelatin, nisin, spray-drying, antimicrobial function, bioactivity
Objavljeno v DKUM: 10.03.2025; Ogledov: 0; Prenosov: 8
.pdf Celotno besedilo (7,52 MB)
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.07 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici