| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju


1 - 10 / 42
Na začetekNa prejšnjo stran12345Na naslednjo stranNa konec
Development of a Model for Predicting Brake Torque Using LSTM and TCN Models
Tomaž Roškar, 2020, magistrsko delo

Opis: The main purpose of this thesis is to compare two state-of-the-art machine learning models, LSTM (Long Short-Term Memory) and TCN (Temporal Convolutional Network), on an AVL List GmbH case use, where the goal is to predict vehicle brake torque. Dataset used for model testing consists of multiple features which are preprocessed using several preprocessing methods. For model implementation Python’s libraries Keras and TensorFlow are used. Results from this thesis show that TCN is able to outperform LSTM. TCN achieves lower RMSE on the test dataset and is significantly faster in training and evaluation.
Ključne besede: brake torque, machine learning, neural network, LSTM, TCN, RNN, CNN
Objavljeno: 24.09.2020; Ogledov: 248; Prenosov: 0

Nature-inspired algorithms for hyperparameter optimization
Filip Glojnarić, 2019, magistrsko delo

Opis: This master thesis is focusing on the utilization of nature-inspired algorithms for hyperparameter optimization, how they work and how to use them. We present some existing methods for hyperparameter optimization as well as propose a novel method that is based on six different nature-inspired algorithms: Firefly algorithm, Grey Wolf Optimizer, Particle Swarm Optimization, Genetic algorithm, Differential Evolution, and Hybrid Bat algorithm. We also show the optimization results (set of hyperparameters) for each algorithm and we present the plots of the accuracy for each combination and handpicked one. In discussion of the results, we provide the answers on our research questions as well as propose ideas for future work.
Ključne besede: artificial intelligence, artificial neural networks, machine learning, nature-inspired algorithms, evolutionary algorithms
Objavljeno: 09.12.2019; Ogledov: 668; Prenosov: 77
.pdf Celotno besedilo (969,13 KB)

Dušica Mirković, 2019, doktorska disertacija

Opis: The aim of this doctoral research was to develop and optimize parenteral nanoemulsions as well as the total parenteral nutrition (TPN) admixture containing a nanoemulsion obtained in the course of the optimization process (hereinafter referred to as optimal nanoemulsion), and to examine their physicochemical and biological quality as well. In addition, the quality of the prepared nanoemulsions was compared with the quality of the industrial nanoemulsion (Lipofundin® MCT/LCT 20%), and, in the end, the TPN admixture initially prepared was also compared with the admixture into which the industrial emulsion was incorporated. Parenteral nanoemulsions that were considered in this dissertation were prepared by the high-pressure homogenization method. This method is the most widely applied method for the production of nanoemulsions due to the shortest length of homogenization time, the best-obtained homogeneity of the product and the smallest droplet diameter. For the nanoemulsion formulation, preparation and optimization purposes, by using, firstly, the concept of the computer-generated fractional design, and, after that, the full experimental design, the assessment of both direct effects of different formulation and process parameters (the oil phase type, the emulsifier type and concentration, a number of homogenization cycles and the pressure under which homogenization was carried out) as well as the effects of their interactions on the characteristics of prepared nanoemulsions was performed. Monitoring the nanoemulsion physical and chemical stability parameters was carried out immediately after their preparation, and then after 10, 30 and 60 days. It included the visual inspection, the measurement of the droplet diameter (the mean and volume droplet diameter), the polydispersity index, the ζ-potential, the pH value, the electrical conductivity, and the peroxide number. After the preparation and after 60 days, the biological evaluation (the sterility test and the endotoxic test) of the prepared nanoemulsions was carried out. As far as the characterization of the TPN admixture is concerned, it included practically the same parameters. The dynamics of monitoring the characteristics of the TPN admixture was determined on the basis of practical needs of hospitalized patients (0h, 24h and 72h). The scope and comprehensiveness of this issue indicated the need to divide the doctoral dissertation into three basic stages. The first stage was preliminary. Using the 24-1 fractional factorial design, nanoemulsions for the parenteral nutrition were prepared. They contained either a combination of soybean and fish oil, or a combination of medium chain triglycerides and fish oil. In addition, the type and the amount of an emulsifier used, a number of high-pressure homogenization cycles, and the homogenization pressure, were also varied. The measurement of the above-mentioned parameters for the industrial nanoemulsion was parallely carried out (Lipofundin® MCT/LCT 20%). The objective of this part of the research was to identify critical numerical factors having the most significant effect on the characteristics that define the prepared parenteral nanoemulsions. Parameters that were singled out as the result of this stage of the research (the emulsifier concentration and a number of homogenization cycles) were used as independent variables in the second stage of the research.
Ključne besede: nanoemulsions, total parenteral nutrition admixtures, high pressure homogenization, design of experiments, optimization, analysis of variance, artificial neural networks
Objavljeno: 07.06.2019; Ogledov: 10884; Prenosov: 0
.pdf Celotno besedilo (2,82 MB)

Estimating piping potential in earth dams and levees using generalized neural networks
Xinhua Xue, Xingguo Yang, Xin Chen, 2014, izvirni znanstveni članek

Opis: Internal erosion and piping in embankments and their foundations is the main cause of failures and accidents to embankment dams. To estimate the risks of dam failure phenomenon, it is necessary to understand this phenomenon and to develop scientifically derived analytical models that are simpler, easier to implement, and more accurate than traditional methods for evaluation of piping potential. In this study, a generalized regression neural network (GRNN) technique has been applied for the assessment of piping potential, as well, due to its ability to fit complex nonlinear models. The performance of GRNN has been cross validated using the k-fold cross validation method technique. The GRNN model is found to have very good predictive ability and is expected to be very reliable for evaluation of piping potential.
Ključne besede: piping, generalized neural network, cross validation, BP neural network
Objavljeno: 14.06.2018; Ogledov: 485; Prenosov: 41
.pdf Celotno besedilo (463,20 KB)
Gradivo ima več datotek! Več...

The accuracy of the germination rate of seeds based on image processing and artificial neural networks
Uroš Škrubej, Črtomir Rozman, Denis Stajnko, 2015, izvirni znanstveni članek

Opis: This paper describes a computer vision system based on image processing and machine learning techniques which was implemented for automatic assessment of the tomato seed germination rate. The entire system was built using open source applications Image J, Weka and their public Java classes and linked by our specially developed code. After object detection, we applied artificial neural networks (ANN), which was able to correctly classify 95.44% of germinated seeds of tomato (Solanum lycopersicum L.).
Ključne besede: image processing, artificial neural networks, seeds, tomato
Objavljeno: 14.11.2017; Ogledov: 819; Prenosov: 260
.pdf Celotno besedilo (353,43 KB)
Gradivo ima več datotek! Več...

Analysis of neural network responses in calibration of microsimulation traffic model
Irena Ištoka Otković, Damir Varevac, Matjaž Šraml, 2015, izvirni znanstveni članek

Opis: Microsimulation models are frequently used in traffic analysis. Various optimization methods are used in calibration, and the one method that has shown success is neural networks. This paper shows the responses of neural networks during calibration of a microsimulation traffic model. We analyzed two calibration methods by applying neural networks and comparing their neural network learning (according to their achieved correlation and the mean error of prediction) and their generalization ability (comparison of generalization results was analyzed in two steps). The best correlation between the microsimulation results and neural network prediction was 88.3%, achieved for the traveling time prediction, on which the first calibration method is based.
Ključne besede: microsimulation traffic models, calibration, response of neural networks, traveling time, queue parameters
Objavljeno: 02.08.2017; Ogledov: 675; Prenosov: 301
.pdf Celotno besedilo (1,07 MB)
Gradivo ima več datotek! Več...

Web based education tool for neural network robot control
Jure Čas, Darko Hercog, Riko Šafarič, izvirni znanstveni članek

Opis: This paper describes the application for teleoperations of the SCARA robot via the internet. The SCARA robot is used by students of mehatronics at the University of Maribor as a remote educational tool. The developed software consists of two parts i.e. the continuous neural network sliding mode controller (CNNSMC) and the graphical user interface (GUI). Application is based on two well-known commercially available software packages i.e. MATLAB/Simulink and LabVIEW. Matlab/Simulink and the DSP2 Library for Simulink are used for control algorithm development, simulation and executable code generation. While this code is executing on the DSP-2 Roby controller and through the analog and digital I/O lines drives the real process, LabVIEW virtual instrument (VI), running on the PC, is used as a user front end. LabVIEW VI provides the ability for on-line parameter tuning, signal monitoring, on-line analysis and via Remote Panels technology also teleoperation. The main advantage of a CNNSMC is the exploitation of its self-learning capability. When friction or an unexpected impediment occurs for example, the user of a remote application has no information about any changed robot dynamic and thus is unable to dispatch it manually. This is not a control problem anymore because, when a CNNSMC is used, any approximation of changed robot dynamic is estimated independently of the remote's user.
Ključne besede: LabVIEW, Matlab/Simulink, neural network control, remote educational tool
Objavljeno: 19.07.2017; Ogledov: 714; Prenosov: 70
.pdf Celotno besedilo (792,88 KB)
Gradivo ima več datotek! Več...

Prediction of technological parameters of sheet metal bending in two stages using feed-forward neural network
Jernej Šenveter, Jože Balič, Mirko Ficko, Simon Klančnik, 2016, izvirni znanstveni članek

Opis: This paper describes sheet metal bending in two stages as well as predicting and testing of the final bend angle by means of a feed-forward neural network. The primary objective was to research the technological parameters of bending sheet metal in two stages and to develop an intelligent method that would enable the predicting of those technological parameters. The process of bending sheet metal in two stages is presented by demonstrating the various technological parameters and the test tool used to carry out tests and measurements. The results of the tests and measurements were of decisive guidance in the evaluation of individual technological parameters. Developed method for prediction of the final bend angle is based on a feed-forward neural network that receives signals at the input level. These signals then travel through the hidden level to the output level, where the responses to input signals are received. The input to the neural network is composed of data that affect the selection of the final bend angle. Only five different inputs are used for the total neural network. By choosing the desired final bend angle by means of the trained neural network, bending sheet metal in two stages is optimised and made more efficient.
Ključne besede: bending in two stages, intelligent system, neural network, prediction of the final bend angle
Objavljeno: 12.07.2017; Ogledov: 587; Prenosov: 371
.pdf Celotno besedilo (900,30 KB)
Gradivo ima več datotek! Več...

Prediction of dimensional deviation of workpiece using regression, ANN and PSO models in turning operation
David Močnik, Matej Paulič, Simon Klančnik, Jože Balič, 2014, izvirni znanstveni članek

Opis: As manufacturing companies pursue higher-quality products, they spend much of their efforts monitoring and controlling dimensional accuracy. In the present work for dimensional deviation prediction of workpiece in turning 11SMn30 steel, the conventional deterministic approach, such as multiple linear regression and two artificial intelligence techniques, back-propagation feed-forward artificial neural network (ANN) and particle swarm optimization (PSO) have been used. Spindle speed, feed rate, depth of cut, pressure of cooling lubrication fluid and number of produced parts were taken as input parameters and dimensional deviation of workpiece as an output parameter. Significance of a single parameter and their interactive influences on dimensional deviation were statistically analysed and values predicted from regression, ANN and PSO models were compared with experimental results to estimate prediction accuracy. A predictive PSO based model showed better predictions than two remaining models. However, all three models can be used for the prediction of dimensional deviation in turning.
Ključne besede: artificial neural network, dimensional dviation, particle swarm optimization, regression
Objavljeno: 12.07.2017; Ogledov: 542; Prenosov: 108
.pdf Celotno besedilo (1,17 MB)
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.41 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici