SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 2 / 2
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Limite inverznih limit
Matej Merhar, 2013, doktorska disertacija

Opis: V doktorski disertaciji se obravnava vprašanje ali iz konvergence grafov navzgor polzveznih veznih funkcij sledi konvergenca ustreznih pripadajočih inverznih limit za konstantna inverzna zaporedja kompaktnih metričnih prostorov. V uvodnem delu se vpeljejo osnovni pojmi kot so navzgor polzvezne funkcije, inverzna zaporedja in inverzne limite. V osrednjem delu se na konkretnih primerih pokaže, da je odgovor na zgoraj zastavljeno vprašanje v splošnem negativen in v obliki izrekov poda dodatne pogoje za vezne funkcije, ki zagotavljajo, da iz konvergence njihovih grafov sledi konvergenca pripadajočih inverznih limit. Med drugim se dokaže, da če so vezne funkcije surjektivne in funkcija h kateri njihovi grafi konvergirajo enolična, tedaj tudi zaporedje pripadajočih inverznih limit konvergira. Te pogoje se v nadaljevanju nekoliko omili in posploši na splošna inverzna zaporedja. Predstavi se tudi uporaba navedenih rezultatov za konstrukcijo poti v hiperprostorih. V zaključnem poglavju se navede še nekatera odprta vprašanja, ki odpirajo možnost nadaljnjega raziskovanja.
Ključne besede: kontinuum, hiperprostor, limita, inverzna limita, zvezna preslikava, navzgor polzvezna preslikava, pot
Objavljeno: 08.10.2013; Ogledov: 1265; Prenosov: 74
.pdf Celotno besedilo (305,50 KB)

2.
Posplošitve markovskih funkcij in njihove inverzne limite
Tjaša Lunder, 2019, doktorska disertacija

Opis: Disertacija se ukvarja s študijem posebnih tipov posplošenih inverznih limit. V disertaciji smo uspešno rešili problem izbire definicije posplošenih markovskih funkcij in definicije enakosti vzorcev dveh takšnih funkcij, ki nam omogoča, da se tudi za razred večličnih preslikav dokaže izrek analogen izreku Holtove v [11]. Izrek Holtove velja samo za surjektivne enolične markovske preslikave. Naš izrek pa velja tudi za večlične funkcije, velja celo brez predpostavke o surjektivnosti. Tako pri markovskih preslikavah kot pri naših, posplošenih markovskih preslikavah, so particije končne množice. V nadaljevanju disertacije smo pokazali, da je možna tudi nadaljnja posplošitev, pri kateri so particije števno neskončne. Na ta način smo vpeljali števno markovske funkcije ter enakost vzorcev števno markovskih preslikav. Tudi ti dve definiciji sta bili ustvarjeni tako, da sta omogočili dokaz izreka o homeomorfnosti posplošenih inverznih limit v primeru, kadar so vezne preslikave števno markovske funkcije z enakimi vzorci. Tudi ta izrek smo dokazali brez predpostavke o surjektivnosti. To teorijo smo v nadaljevanju aplicirali na šotorske funkcije in funkcije oblike N (dva posebna razreda enoličnih in večličnih funkcij). V zadnjem poglavju smo predstavili nekaj odprtih problemov.
Ključne besede: markovska preslikava, ve£li£na funkcija, navzgor polzvezna funkcija, posplo²ena markovska funkcija, ²tevno markovska funkcija, inverzno zaporedje, inverzna limita, ²otorska funkcija, funkcija oblike N.
Objavljeno: 19.02.2019; Ogledov: 201; Prenosov: 19
.pdf Celotno besedilo (1,65 MB)

Iskanje izvedeno v 0.05 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici