1. Active BIM system for optimized multi-project ready-mix-concrete deliveryHana Begić, Mario Galić, Uroš Klanšek, 2023, izvirni znanstveni članek Opis: Purpose – Ready-mix concrete delivery problem (RMCDP), a specific version of the vehicle routing problem (VRP), is a relevant supply-chain engineering task for construction management with various formulations and solving methods. This problem can range from a simple scenario involving one source, one material and one destination to a more challenging and complex case involving multiple sources, multiple materials and multiple destinations. This paper presents an Internet of Things (IoT)-supported active building information modeling (BIM) system for optimized multi-project ready-mix concrete (RMC) delivery. Design/methodology/approach – The presented system is BIM-based, IoT supported, dynamic and automatic input/output exchange to provide an optimal delivery program for multi-project ready-mix-concrete problem. The input parameters are extracted as real-time map-supported IoT data and transferred to the system via an application programming interface (API) into a mixed-integer linear programming (MILP) optimization model developed to perform the optimization. The obtained optimization results are further integrated into BIM by conventional project management tools. To demonstrate the features of the suggested system, an RMCDP example was applied to solve that included four building sites, seven eligible concrete plants and three necessary RMC mixtures. Findings – The system provides the optimum delivery schedule for multiple RMCs to multiple construction sites, as well as the optimum RMC quantities to be delivered, the quantities from each concrete plant that must be supplied, the best delivery routes, the optimum execution times for each construction site, and the total minimal costs, while also assuring the dynamic transfer of the optimized results back into the portfolio of multiple BIM projects. The system can generate as many solutions as needed by updating the real-time input parameters in terms of change of the routes, unit prices and availability of concrete plants. Originality/value – The suggested system allows dynamic adjustments during the optimization process, andis adaptable to changes in input data also considering the real-time input data. The system is based on spreadsheets, which are widely used and common tool that most stakeholders already utilize daily, while also providing the possibility to apply a more specialized tool. Based on this, the RMCDP can be solved using both conventional and advanced optimization software, enabling the system to handle even large-scale tasks as necessary. Ključne besede: active building information modeling, BIM, internet of things, IoT, multi-project environment, optimization, ready-mix-concrete delivery, RMC Objavljeno v DKUM: 11.09.2024; Ogledov: 32; Prenosov: 0 |
2. A multi-objective solution of green vehicle routing problemÖzgür Kabadurmuş, Mehmet Serdar Erdoğan, Yiğitcan Özkan, Mertcan Köseoğlu, 2019, izvirni znanstveni članek Opis: Distribution is one of the major sources of carbon emissions and this issue has been addressed by Green Vehicle Routing Problem (GVRP). This problem aims to fulfill the demand of a set of customers using a homogeneous fleet of Alternative Fuel Vehicles (AFV) originating from a single depot. The problem also includes a set of Alternative Fuel Stations (AFS) that can serve the AFVs. Since AFVs started to operate very recently, Alternative Fuel Stations servicing them are very few. Therefore, the driving span of the AFVs is very limited. This makes the routing decisions of AFVs more difficult. In this study, we formulated a multi-objective optimization model of Green Vehicle Routing Problem with two conflicting objective functions. While the first objective of our GVRP formulation aims to minimize total CO2 emission, which is proportional to the distance, the second aims to minimize the maximum traveling time of all routes. To solve this multi-objective problem, we used �-constraint method, a multi-objective optimization technique, and found the Pareto optimal solutions. The problem is formulated as a Mixed-Integer Linear Programming (MILP) model in IBM OPL CPLEX. To test our proposed method, we generated two hypothetical but realistic distribution cases in Izmir, Turkey. The first case study focuses on an inner-city distribution in Izmir, and the second case study involves a regional distribution in the Aegean Region of Turkey. We presented the Pareto optimal solutions and showed that there is a tradeoff between the maximum distribution time and carbon emissions. The results showed that routes become shorter, the number of generated routes (and therefore, vehicles) increases and vehicles visit a lower number of fuel stations as the maximum traveling time decreases. We also showed that as maximum traveling time decreases, the solution time significantly decreases. Ključne besede: green vehicle routing problem, alternative fuel vehicles, epsilon-constraint, multi-objective optimization, Pareto optimality Objavljeno v DKUM: 22.08.2024; Ogledov: 44; Prenosov: 8 Celotno besedilo (764,60 KB) Gradivo ima več datotek! Več... |
3. Sustainable design of circular reinforced concrete column sections via multi-objective optimizationPrimož Jelušič, Tomaž Žula, 2023, izvirni znanstveni članek Opis: An optimization model for reinforced concrete circular columns based on the Eurocodes is presented. With the developed optimization model, which takes into account the exact distribution of the steel reinforcement, which is not the case when designing with conventional column design charts, an optimal design for the reinforced concrete cross section is determined. The optimization model uses discrete variables, which makes the results more suitable for actual construction practice and fully exploits the structural capacity of the structure. A parametric study of the applied axial load and bending moment was performed for material cost and CO2 emissions. The results based on a single objective function show that the optimal design of the reinforced concrete column cross section obtained for the material cost objective function contains a larger cross-sectional area of concrete and a smaller area of steel compared with the optimization results when CO2 emissions are determined as the objective function. However, the optimal solution in the case where the material cost was assigned as the objective function has much more reserve in axial load capacity than in the optimal design where CO2 was chosen as the objective function. In addition, the multi-objective optimization was performed to find a set of solutions that provide the best trade-offs between the material cost and CO2 emission objectives. Ključne besede: reinforced concrete columns, circular cross section, costs, CO2 emissions, multi-objective optimization, genetic algorithm Objavljeno v DKUM: 15.04.2024; Ogledov: 338; Prenosov: 207 Celotno besedilo (4,56 MB) Gradivo ima več datotek! Več... |
4. A graph pointer network-based multi-objective deep reinforcement learning algorithm for solving the traveling salesman problemJeewaka Perera, Shih-Hsi Liu, Marjan Mernik, Matej Črepinšek, Miha Ravber, 2023, izvirni znanstveni članek Opis: Traveling Salesman Problems (TSPs) have been a long-lasting interesting challenge to researchers in different areas. The difficulty of such problems scales up further when multiple objectives are considered concurrently. Plenty of work in evolutionary algorithms has been introduced to solve multi-objective TSPs with promising results, and the work in deep learning and reinforcement learning has been surging. This paper introduces a multi-objective deep graph pointer network-based reinforcement learning (MODGRL) algorithm for multi-objective TSPs. The MODGRL improves an earlier multi-objective deep reinforcement learning algorithm, called DRL-MOA, by utilizing a graph pointer network to learn the graphical structures of TSPs. Such improvements allow MODGRL to be trained on a small-scale TSP, but can find optimal solutions for large scale TSPs. NSGA-II, MOEA/D and SPEA2 are selected to compare with MODGRL and DRL-MOA. Hypervolume, spread and coverage over Pareto front (CPF) quality indicators were selected to assess the algorithms’ performance. In terms of the hypervolume indicator that represents the convergence and diversity of Pareto-frontiers, MODGRL outperformed all the competitors on the three well-known benchmark problems. Such findings proved that MODGRL, with the improved graph pointer network, indeed performed better, measured by the hypervolume indicator, than DRL-MOA and the three other evolutionary algorithms. MODGRL and DRL-MOA were comparable in the leading group, measured by the spread indicator. Although MODGRL performed better than DRL-MOA, both of them were just average regarding the evenness and diversity measured by the CPF indicator. Such findings remind that different performance indicators measure Pareto-frontiers from different perspectives. Choosing a well-accepted and suitable performance indicator to one’s experimental design is very critical, and may affect the conclusions. Three evolutionary algorithms were also experimented on with extra iterations, to validate whether extra iterations affected the performance. The results show that NSGA-II and SPEA2 were greatly improved measured by the Spread and CPF indicators. Such findings raise fairness concerns on algorithm comparisons using different fixed stopping criteria for different algorithms, which appeared in the DRL-MOA work and many others. Through these lessons, we concluded that MODGRL indeed performed better than DRL-MOA in terms of hypervolumne, and we also urge researchers on fair experimental designs and comparisons, in order to derive scientifically sound conclusions. Ključne besede: multi-objective optimization, traveling salesman problems, deep reinforcement learning Objavljeno v DKUM: 28.03.2024; Ogledov: 184; Prenosov: 24 Celotno besedilo (7,89 MB) Gradivo ima več datotek! Več... |
5. Accuracy is not enough: optimizing for a fault detection delayMatej Šprogar, Domen Verber, 2023, izvirni znanstveni članek Opis: This paper assesses the fault-detection capabilities of modern deep-learning models. It highlights that a naive deep-learning approach optimized for accuracy is unsuitable for learning fault-detection models from time-series data. Consequently, out-of-the-box deep-learning strategies may yield impressive accuracy results but are ill-equipped for real-world applications. The paper introduces a methodology for estimating fault-detection delays when no oracle information on fault occurrence time is available. Moreover, the paper presents a straightforward approach to implicitly achieve the objective of minimizing fault-detection delays. This approach involves using pseudo-multi-objective deep optimization with data windowing, which enables the utilization of standard deep-learning methods for fault detection and expanding their applicability. However, it does introduce an additional hyperparameter that needs careful tuning. The paper employs the Tennessee Eastman Process dataset as a case study to demonstrate its findings. The results effectively highlight the limitations of standard loss functions and emphasize the importance of incorporating fault-detection delays in evaluating and reporting performance. In our study, the pseudo-multi-objective optimization could reach a fault-detection accuracy of 95% in just a fifth of the time it takes the best naive approach to do so. Ključne besede: artificial neural networks, deep learning, fault detection, accuracy, multi-objective optimization Objavljeno v DKUM: 30.11.2023; Ogledov: 363; Prenosov: 27 Celotno besedilo (478,93 KB) Gradivo ima več datotek! Več... |
6. An efficient metaheuristic algorithm for job shop scheduling in a dynamic environmentHankun Zhang, Borut Buchmeister, Xueyan Li, Robert Ojsteršek, 2023, izvirni znanstveni članek Ključne besede: metaheuristic algorithm, improved multi-phase particle swarm optimization, cellular neighbor network, dynamic job shop scheduling, simulation modelling Objavljeno v DKUM: 19.05.2023; Ogledov: 527; Prenosov: 45 Celotno besedilo (5,62 MB) Gradivo ima več datotek! Več... |
7. Multi-objective optimization algorithms with the island metaheuristic for effective project management problem solvingChristina Brester, Ivan Ryzhikov, Eugene Semenkin, 2017, izvirni znanstveni članek Opis: Background and Purpose: In every organization, project management raises many different decision-making problems, a large proportion of which can be efficiently solved using specific decision-making support systems. Yet such kinds of problems are always a challenge since there is no time-efficient or computationally efficient algorithm to solve them as a result of their complexity. In this study, we consider the problem of optimal financial investment. In our solution, we take into account the following organizational resource and project characteristics: profits, costs and risks.
Design/Methodology/Approach: The decision-making problem is reduced to a multi-criteria 0-1 knapsack problem. This implies that we need to find a non-dominated set of alternative solutions, which are a trade-off between maximizing incomes and minimizing risks. At the same time, alternatives must satisfy constraints. This leads to a constrained two-criterion optimization problem in the Boolean space. To cope with the peculiarities and high complexity of the problem, evolution-based algorithms with an island meta-heuristic are applied as an alternative to conventional techniques.
Results: The problem in hand was reduced to a two-criterion unconstrained extreme problem and solved with different evolution-based multi-objective optimization heuristics. Next, we applied a proposed meta-heuristic combining the particular algorithms and causing their interaction in a cooperative and collaborative way. The obtained results showed that the island heuristic outperformed the original ones based on the values of a specific metric, thus showing the representativeness of Pareto front approximations. Having more representative approximations, decision-makers have more alternative project portfolios corresponding to different risk and profit estimations. Since these criteria are conflicting, when choosing an alternative with an estimated high profit, decision-makers follow a strategy with an estimated high risk and vice versa.
Conclusion: In the present paper, the project portfolio decision-making problem was reduced to a 0-1 knapsack constrained multi-objective optimization problem. The algorithm investigation confirms that the use of the island meta-heuristic significantly improves the performance of genetic algorithms, thereby providing an efficient tool for Financial Responsibility Centres Management. Ključne besede: 0-1 multi-objective constrained knapsack problem, project management portfolio problem, multi-objective evolution-based optimization algorithms, collaborative and cooperative meta-heuristics Objavljeno v DKUM: 04.05.2018; Ogledov: 1571; Prenosov: 306 Celotno besedilo (993,98 KB) Gradivo ima več datotek! Več... |
8. Optimization of machining parameters for turning operation with multiple quality characteristics using Grey relational analysisFranko Puh, Zoran Jurković, Mladen Perinic, Miran Brezočnik, Stipo Buljan, 2016, izvirni znanstveni članek Opis: Optimization of machining processes is essential for achieving of higher productivity and high quality products in order to remain competitive. This study investigates multi-objective optimization of turning process for an optimal parametric combination to provide the minimum surface roughness (Ra) with the maximum material-removal rate (MRR) using the Grey–Based Taguchi method. Turning parameters considered are cutting speed, feed rate and depth of cut. Nine experimental runs based on Taguchi’s L9 (34) orthogonal array were performed followed by the Grey relational analysis to solve the multi- response optimization problem. Based on the Grey relational grade value, optimum levels of parameters have been identified. The significance of parameters on overall quality characteristics of the cutting process has been evaluated by the analysis of variance (ANOVA). The optimal parameter values obtained during the study have been validated by confirmation experiment. Ključne besede: ANOVA, Grey relational analysis, multi-objective optimization, Taguchi method, turning Objavljeno v DKUM: 12.07.2017; Ogledov: 1346; Prenosov: 405 Celotno besedilo (487,53 KB) Gradivo ima več datotek! Več... |
9. Optimal robust motion controller design using multi-objective genetic algorithmAndrej Sarjaš, Rajko Svečko, Amor Chowdhury, 2014, izvirni znanstveni članek Opis: This paper describes the use of a multi-objective genetic algorithm for robust motion controller design. Motion controller structure is based on a disturbance observer in an RIC framework. The RIC approach is presented in the form with internal and external feedback loops, in which an internal disturbance rejection controller and an external performance controller must be synthesised. This paper involves novel objectives for robustness and performance assessments for such an approach. Objective functions for the robustness property of RIC are based on simple even polynomials with non-negativity conditions. Regional pole placement method is presented with the aims of controllers% structures simplification and their additional arbitrary selection. Regional pole placement involves arbitrary selection of central polynomials for both loops, with additional admissible region of the optimized pole location. Polynomial deviation between selected and optimized polynomials is measured with derived performance objective functions. A multi-objective function is composed of different unrelated criteria such as, robust stability, controllers' stability and time performance indexes of closed loops. The design of controllers and multi-objective optimization procedure involve a set of the objectives, which are optimized simultaneously with a genetic algorithm - Differential evolution. Ključne besede: disturbance observer, DOB, uncertainty systems, optimal robust control, multi-objective optimization, differential evolution Objavljeno v DKUM: 15.06.2017; Ogledov: 1630; Prenosov: 364 Celotno besedilo (2,22 MB) Gradivo ima več datotek! Več... |
10. Multi-objective optimization of automated storage and retrieval systemsTone Lerher, Matjaž Šraml, Matej Borovinšek, Iztok Potrč, 2013, izvirni znanstveni članek Opis: The multi-objective optimization of automated warehouse is discussed and evaluated in present paper. Since most of researchers in material handling community had performed optimization of decision variables with single objective function only (usually named with minimum travel time, maximum throughput capacity, minimum cost, etc.), the multi-objective optimization (time-cost-quality) will be presented in present research. For the optimization of decision variables in objective functions, the method with genetic algorithms is used. The main objective of our contribution is to determine the performance of the system according to the multi-objective optimization technique. Ključne besede: automated warehouses, performance, multi-objective function, optimization Objavljeno v DKUM: 10.07.2015; Ogledov: 1133; Prenosov: 70 Povezava na celotno besedilo |