| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 3 / 3
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Pristop k vizualizaciji podatkov na osebnem računalniku
David Podgorelec, Marko Vinter, Borut Žalik, 2002, izvirni znanstveni članek

Opis: V članku je predstavljen algoritem za senčenje prostorskih podatkov, ki je zaradi svoje enostavnosti in hitrosti primeren tudi za uporabo na osebnem računalniku. Množice podatkov, ki jih je zmožen vizualizirati, so dovolj velike za učinkovito rabo v medicinskih aplikacijah. Algoritem temelji na sekundarnem geometrijskem modelu, ki smo ga poimenovali seznam vidnih vokslov. Vizualizacijo poskuša pospešiti s predhodnim izločanjem vokslov, nezanimivih za uporabnika. Ti tako imenovani beli voksli predstavljajo zrak, notranjost objektov in dele površja objektov, ki niso vidni iz trenutnega položaja opazovalca. Delovanje in učinkovitost algoritma smo predstavili na nekaj praktičnih primerih uporabe pri vizualizaciji medicinskih podatkov.
Ključne besede: računalniška grafika, prostorski podatki, senčenje prostorskih podatkov, znanstvena vizualizacija, vizualizacija prostorskih podatkov, izdelava modelov, voksli, vizualizacija medicinskih podatkov, computer graphics, volume data, volume rendering, visualisation, volume data visualisation, voxels, medical data sets
Objavljeno: 01.06.2012; Ogledov: 1266; Prenosov: 26
URL Povezava na celotno besedilo

2.
Outsourcing medical data analyses
Boštjan Brumen, Marjan Heričko, Andrej Sevčnikar, Jernej Završnik, Marko Hölbl, 2013, izvirni znanstveni članek

Opis: Background: Medical data are gold mines for deriving the knowledge that could change the course of a single patient’s life or even the health of the entire population. A data analyst needs to have full access to relevant data, but full access may be denied by privacy and confidentiality of medical data legal regulations, especially when the data analyst is not affiliated with the data owner. Objective: Our first objective was to analyze the privacy and confidentiality issues and the associated regulations pertaining to medical data, and to identify technologies to properly address these issues. Our second objective was to develop a procedure to protect medical data in such a way that the outsourced analyst would be capable of doing analyses on protected data and the results would be comparable, if not the same, as if they had been done on the original data. Specifically, our hypothesis was there would not be a difference between the outsourced decision trees built on encrypted data and the ones built on original data. Methods: Using formal definitions, we developed an algorithm to protect medical data for outsourced analyses. The algorithm was applied to publicly available datasets (N=30) from the medical and life sciences fields. The analyses were performed on the original and the protected datasets and the results of the analyses were compared. Bootstrapped paired t tests for 2 dependent samples were used to test whether the mean differences in size, number of leaves, and the accuracy of the original and the encrypted decision trees were significantly different. Results: The decision trees built on encrypted data were virtually the same as those built on original data. Out of 30 datasets, 100% of the trees had identical accuracy. The size of a tree and the number of leaves was different only once (1/30, 3%, P=.19). Conclusions: The proposed algorithm encrypts a file with plain text medical data into an encrypted file with the data protected in such a way that external data analyses are still possible. The results show that the results of analyses on original and on protected data are identical or comparably similar. The approach addresses the privacy and confidentiality issues that arise with medical data and is adherent to strict legal rules in the United States and Europe regarding the processing of the medical data.
Ključne besede: medical data, disclosure control, medical confidentiality, data analysis, data security
Objavljeno: 02.08.2017; Ogledov: 547; Prenosov: 65
.pdf Celotno besedilo (3,34 MB)
Gradivo ima več datotek! Več...

3.
Patients' genetic data protection in Polish law and EU law
Kinga Michałowska, Karol Magoń, 2018, izvirni znanstveni članek

Opis: The article entitled "Patients' genetic data protection in Polish law and EU law - selected issues" presents issues related to the protection of patients' rights and focuses on the legal basis for genetic testing and genetic data protection. Based on a comparison of regulations of international law and regulations on genetic tests introduced in foreign legal systems, the text analyzes the assumptions for the draft of the Polish act on genetic tests performed for health purposes. It presents the patient's consent to testing, the scope of information provided to the patient, the right to disclose research results to related persons and the protection of genetic data. In reference to the regulations set out in other acts, it was noted that they do not guarantee the protection of information obtained as a result of research. Due to the particular nature of genetic data, they require increased protection, which can be guaranteed through implementation of the Act on Genetic Research. In the final part, authors presented the most important achievements of the judicature of European Court of Human Rights in the field of genetic data protection.
Ključne besede: genetic research, genetic data, protection of genetic data, patient's rights, medical documentation
Objavljeno: 09.10.2018; Ogledov: 443; Prenosov: 45
.pdf Celotno besedilo (581,68 KB)
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.09 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici