Opis: Research into robotics visual servo systems is an important content in the robotics field. This paper describes a control approach for a robotics manipulator. In this paper, a multilayer feedforward network is applied to a robot visual servo control problem. The model uses new neural network architecture and a new algorithm for modifying neural connection strength. No a-prior knowledge is required of robot kinematics and camera calibration. The network is trained using an end-effector position. After training, performance is measured by having the network generate joint-angles for arbitrary end effector trajectories. A 2-degrees-of-freedom (DOF) parallel manipulator was used for the study. It was discovered that neural networks provide a simple and effective way of controlling robotic tasks. This paper explores the application of a neural network for approximating nonlinear transformation relating to the robotćs tip-position, from the image coordinates to its joint coordinates. Real experimental examples are given to illustrate the significance of this method. Experimental results are compared with a similar method called the Broyden method, for uncalibrated visual servo-control. Ključne besede:robots, neural networks, visual servoing, parallel manipulators Objavljeno: 10.07.2015; Ogledov: 1025; Prenosov: 86 Povezava na celotno besedilo

Opis: An approach to a shape optimization of elastic dynamic multibody systems is presented. The proposed method combines an appropriate shape parameterization concept and recently introduced finite element type using absolute nodal coordinate formulation (ANCF). In ANCF, slopes and displacements are used as the nodal coordinates instead of infinitesimal or finite rotations. This way one avoids interpolation of rotational coordinates and problems with finite rotations. ANCF elements are able to describe nonlinear deformation accurately; therefore, this method is very useful for simulations of lightweight multibody structures, where large deformations have to be taken into account. The optimization problem is formulated as a nonlinear programming problem and a gradient-based optimization procedure is implemented. The introduced optimization design variables are related to the cross-sectional parameters of the element and to the shape of the whole structure. The shape parameterization is based on the design element techniqueand a rational B ezier body is used as a design element. A body-like design element makes possible to unify the shape optimization of both simple beams and beam-like (skeletal) structures. Ključne besede:mechanics, dynamics of material systems, multibody systems, elastic mechanical systems, manipulators, dynamically loaded beams, optimum shape design, absolute nodal coordinate formulation, design element technique, finite element method Objavljeno: 31.05.2012; Ogledov: 1438; Prenosov: 101 Povezava na celotno besedilo