| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 2 / 2
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Integrabilnost, linearizabilnost in limitni cikli polinomskih sistemov navadnih diferencialnih enačb : doktorska disertacija
Barbara Arcet, 2023, doktorska disertacija

Opis: Krovna tema pri\v cujo\v ce doktorske disertacije je kvalitativna obravnava nekaterih dru\v zin navadnih diferencialnih ena\v cb (NDE). Osrednja pozornost je namenjena ravninskim in tridimenzionalnim polinomskim sistemom ter preiskovanju pogojev, pri katerih se sistemi pona\v sajo s katero od naslovnih lastnosti: integrabilnostjo, linearizabilnostjo ali prisotnostjo limitnih ciklov. Uvodno poglavje je namenjeno definiciji osnovnih pojmov, ki zadevajo singularne to\v cke in njihove okolice v sistemih NDE. Predstavimo nekaj klju\v cnih metod in algoritmov komutativne ra\v cunske algebre, ki so bistveni pri preiskovanju sistemov v nadaljevanju dela. V drugem poglavju definiramo dve osrednji lastnosti $n$-dimenzionalnih sistemov NDE, integrabilnost in linearizabilnost. Najprej predstavimo metodo, s katero lahko pridobimo pogoje za integrabilnost sistema, nato pa navedemo nekaj na\v cinov za dokaz zadostnosti teh pogojev. Za preu\v citev linearizabilnosti se dotaknemo teorije normalnih form, predstavimo na\v cin za iskanje pogojev za linearizabilnost sistemov in doka\v zemo izrek, ki povezuje integrabilnost ter linearizabilnost sistemov NDE. Z uporabo omenjene teorije nato preu\v cimo integrabilnost in linearizabilnost kvadrati\v cnega tridimenzionalnega sistema z $(1:-1:-1)$-resonantno singularnostjo v izhodi\v s\v cu. Tretje poglavje je namenjeno ravninskim sistemom NDE in njihovi linearizabilnosti, ki je tesno povezana z izohronostjo. Predstavimo metodo za pridobivanje pogojev za linearizabilnost, ko le-teh ne moremo pridobiti iz linearizabilnostnih koli\v cin, in sicer iskanje polinomske linearizacije ene od ena\v cb sistema. Pri prou\v cevanju linearizabilnosti se osredoto\v cimo na nekatere Hamiltonske sisteme s homogenimi in nehomogenimi nelinearnostmi stopnje kve\v cjemu sedem. V \v cetrtem delu disertacije se lotimo problema centra in fokusa za nekatere rever-zibilne kubi\v cne sisteme. V tem smislu preiskujemo tri sisteme, ki so z ustrezno transformacijo prevedeni v eno izmed kanoni\v cnih oblik ravninskega kubi\v cnega sistema s singularnostjo tipa center ali fokus v izhodi\v s\v cu. Doka\v zemo, da so vsi pridobljeni sistemi Darbouxjevo integrabilni. Na koncu razi\v s\v cemo \v se orbitalno reverzibilnost teh sistemov. V zadnjem poglavju se posvetimo limitnim ciklom. Opi\v semo enega klju\v cnih pojavov za nastanek limitnih ciklov, Hopfovo bifurkacijo. Predstavimo metodo preiskovanja to\v ck v neskon\v cnosti, Poincar\' ejevo kompaktifikacijo in tehniko analize okolice neenostavnih singularnih to\v ck, usmerjeno napihovanje. Nato razi\v s\v cemo mo\v znosti za pojav limitnih ciklov v tridimenzionalnem biokemi\v cnem modelu in opredelimo fazno sliko v prvem kvadrantu dvodimenzionalnega reakcijskega modela.
Ključne besede: sistemi navadnih diferencialnih enačb, integrabilnost, linearizabilnost, limitni cikli, reverzibilnost, Hamiltonski sistemi
Objavljeno v DKUM: 15.03.2023; Ogledov: 725; Prenosov: 87
.pdf Celotno besedilo (2,58 MB)

2.
Integrabilnost in lokalne bifurkacije v polinomskih sistemih navadnih diferencialnih enačb
Brigita Ferčec, 2013, doktorska disertacija

Opis: V tej doktorski disertaciji obravnavamo naslednje probleme kvalitativne teorije navadnih diferencialnih enačb (NDE): problem centra in fokusa, problem cikličnosti, problem izohronosti in problem bifurkacij kritičnih period. V prvem poglavju vpeljemo nekaj glavnih pojmov kvalitativne teorije NDE in opišemo nekaj temeljnih metod in algoritmov komutativne računske algebre, ki so potrebni za našo študijo. V drugem poglavju obravnavamo problem razlikovanja med centrom in fokusom, ki je ekvivalenten problemu obstoja prvega integrala določene oblike za dan sistem. To je vzrok, zakaj problemu centra in fokusa pravimo tudi problem integrabilnosti. Poiskali smo potrebne pogoje za integrabilnost (pogoje za center) za družino dvodimenzionalnih kubičnih sistemov, za Lotka-Volterrov sistem v obliki linearnega centra, motenega s homogenimi polinomi četrte stopnje in za nekatere polinomske družine v obliki linearnega centra, motenega s homogenimi polinomi pete stopnje. Z uporabo različnih metod smo za večino teh pogojev dokazali njihovo zadostnost za integrabilnost. Nadalje smo v tretjem poglavju z uporabo metod računske algebre pridobili zgornjo mejo za cikličnost (t.j. število limitnih ciklov, ki bifurcirajo iz izhodišča pri majhnih motnjah) družine kubičnih sistemov, obravnavane v drugem poglavju. Izračune premaknemo v polinomsko podalgebro, ki je povezana s časovno rezerzibilnimi sistemi družine in se na tak način izognemo problemu neradikalnosti Bautinovega ideala, povezanega s tem sistemov. Prav tako določimo število limitnih ciklov, ki bifurcirajo iz vsake komponente raznoterosti centra. V zadnjem poglavju disertacije obravnavamo problem izohronosti in problem bifurkacij kritičnih period za tridimenzionalne sisteme s centralnimi mnogoterostmi, na katerih vse trajektorije ustrezajo periodičnim rešitvam sistema. Za koeficiente sistema podamo kriterije za koeficiente sistema za razlikovanje med primeri izohronih in primeri neizohronih nihanj in za določitev zgornje meje števila kritičnih period.
Ključne besede: sistem NDE, integrabilnost, problem centra, časovna reverzibilnost, Darbouxov integral, linearizabilnost, raznoterost centra, fokusna količina, limitni cikel, problem cikličnosti, bifurkacije kritičnih period, funkcija periode, problem izohronosti
Objavljeno v DKUM: 08.07.2013; Ogledov: 2560; Prenosov: 241
.pdf Celotno besedilo (2,20 MB)

Iskanje izvedeno v 0.06 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici