| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 4 / 4
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Computing the weighted Wiener and Szeged number on weighted cactus graphs in linear time
Blaž Zmazek, Janez Žerovnik, 2003, izvirni znanstveni članek

Opis: Cactus is a graph in which every edge lies on at most one cycle. Linear algorithms for computing the weighted Wiener and Szeged numbers on weighted cactus graphs are given. Graphs with weighted vertices and edges correspond to molecular graphs with heteroatoms.
Ključne besede: mathematics, graph theory, Wiener number, Szeged number, weighted cactus, linear algorithm
Objavljeno v DKUM: 05.07.2017; Ogledov: 903; Prenosov: 100
.pdf Celotno besedilo (130,41 KB)
Gradivo ima več datotek! Več...

2.
Recognizing Cartesian products in linear time
Wilfried Imrich, Iztok Peterin, 2007, izvirni znanstveni članek

Opis: We present an algorithm that determines the prime factors of connected graphs with respect to the Cartesian product in linear time and space. This improves a result of Aurenhammer et al. [Cartesian graph factorization at logarithmic cost per edge, Comput. Complexity 2 (1992) 331-349], who compute the prime factors in ▫$O(mlog n)$▫ time, where ▫$m$▫ denotes the number of vertices of ▫$G$▫ and ▫$n$▫ the number of edges. Our algorithm is conceptually simpler. It gains its efficiency by the introduction of edge-labellings.
Ključne besede: matematika, teorija grafov, kartezični produkt grafov, linearni algoritem, razcep, mathematics, graph theory, Cartesian product graphs, linear algorithm, decomposition
Objavljeno v DKUM: 10.07.2015; Ogledov: 1727; Prenosov: 134
URL Povezava na celotno besedilo

3.
The obnoxious center problem on weighted cactus graphs
Blaž Zmazek, Janez Žerovnik, 2001, objavljeni povzetek znanstvenega prispevka na konferenci

Opis: The obnoxious center problem in a graph ▫$G$▫ asks for a location on an edge of the graph such that the minimum weighted distance from this point to a vertex of the graph is as large as possible. An algorithm is given which finds the obnoxious center on a weighted cactus graph in ▫$O(cn)$▫ time, where ▫$n$▫ is the number of vertices and ▫$c$▫ is the number of different vertex weights (called marks).
Ključne besede: matematika, operacijsko raziskovanje, teorija grafov, lokacijski problemi, problem centra, nezaželjeni centri, algoritmi z linearno časovno zahtevnostjo, mathematics, operations research, graph theory, location problems, center problem, obnoxious facilities, linear time algorithm
Objavljeno v DKUM: 10.07.2015; Ogledov: 1343; Prenosov: 97
URL Povezava na celotno besedilo

4.
Assignment problems in logistics
Janez Povh, 2008, izvirni znanstveni članek

Opis: We consider two classical problems from location theory which may serve as theoretical models for several logistic problems where one wants to assign elements of a set A to elements of a set B such that some linear or quadratic function attains its minimum. It turns out that linear objective function yields a linear assignment problem, which can be solved easily by several primal-dual methods like Hungarian method, Shortest augmenting path method etc. On the other hand, taking quadratic objective function into account makes the problem much harder. The resulting quadratic assignment problem is a very useful model but also very tough problem from theoretical and practical point of view. We list several well-known applications of these models and also the most effective methods to solve the problem. However, it is still a challenging task to solve this problem to optimality when the size of underlying sets A and B is greater than 25 and currently impossible task when the size is greater than 35.
Ključne besede: quadratic assignment problem, linear assignment problem, branch and bound algorithm, heuristics
Objavljeno v DKUM: 05.06.2012; Ogledov: 2051; Prenosov: 136
.pdf Celotno besedilo (204,96 KB)
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.14 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici