| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 8 / 8
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Edge-transitive lexicographic and cartesian products
Wilfried Imrich, Ali Iranmanesh, Sandi Klavžar, Abolghasem Soltani, 2016, izvirni znanstveni članek

Opis: In this note connected, edge-transitive lexicographic and Cartesian products are characterized. For the lexicographic product ▫$G \circ H$▫ of a connected graph ▫$G$▫ that is not complete by a graph ▫$H$▫, we show that it is edge-transitive if and only if ▫$G$▫ is edge-transitive and ▫$H$▫ is edgeless. If the first factor of ▫$G \circ H$▫ is non-trivial and complete, then ▫$G \circ H$▫ is edge-transitive if and only if ▫$H$▫ is the lexicographic product of a complete graph by an edgeless graph. This fixes an error of Li, Wang, Xu, and Zhao (Appl. Math. Lett. 24 (2011) 1924--1926). For the Cartesian product it is shown that every connected Cartesian product of at least two non-trivial factors is edge-transitive if and only if it is the Cartesian power of a connected, edge- and vertex-transitive graph.
Ključne besede: edge-transitive graph, vertex-transitive graph, lexicographic product of graphs, Cartesian product of graphs
Objavljeno v DKUM: 31.03.2017; Ogledov: 1072; Prenosov: 441
.pdf Celotno besedilo (150,33 KB)
Gradivo ima več datotek! Več...

2.
Some Steiner concepts on lexicographic products of graphs
Bijo S. Anand, Manoj Changat, Iztok Peterin, Prasanth G. Narasimha-Shenoi, 2012, izvirni znanstveni članek

Opis: The smallest tree that contains all vertices of a subset ▫$W$▫ of ▫$V(G)$▫ is called a Steiner tree. The number of edges of such a tree is the Steiner distance of ▫$W$▫ and union of all Steiner trees of ▫$W$▫ form a Steiner interval. Both of them are described for the lexicographic product in the present work. We also give a complete answer for the following invariants with respect to the Steiner convexity: the Steiner number, the rank, the hull number, and the Carathéodory number, and a partial answer for the Radon number. At the end we locate and repair a small mistake from [J. Cáceres, C. Hernando, M. Mora, I. M. Pelayo, M. L. Puertas, On the geodetic and the hull numbers in strong product graphs, Comput. Math. Appl. 60 (2010) 3020--3031].
Ključne besede: teorija grafov, leksikografski produkt, Steinerjeva konveksnost, Steinerjeva množica, Steinerjeva razdalja, graph theory, lexicographic product, Steiner convexity, Steiner set, Steiner distance
Objavljeno v DKUM: 10.07.2015; Ogledov: 1219; Prenosov: 117
URL Povezava na celotno besedilo

3.
On the b-chromatic number of some graph products
Marko Jakovac, Iztok Peterin, 2012, izvirni znanstveni članek

Opis: Pravilno barvanje vozlišč grafa kjer vsak barvni razred vsebuje vozlišče, ki ima soseda v vseh preostalih barvnih razredih, imenujemo b-barvanje. Največje naravno število ▫$varphi (G)$▫, za katero obstaja b-barvanje grafa ▫$G$▫, imenujemo b-kromatično število. Določimo nekatere spodnje in zgornje meje b-kromatičnega števila za krepki produkt ▫$G,boxtimes, H$▫, leksikografski produkt ▫$G[H]$▫ in za direktni produkt ▫$G,times, H$▫. Prav tako določimo nekatere točne vrednosti za produkte poti, ciklov, zvezd in polnih dvodelnih grafov. Pokažemo tudi, da lahko določimo b-kromatično število za ▫$P_n ,boxtimes, H$▫, ▫$C_n ,boxtimes, H$▫, ▫$P_n[H]$▫, ▫$C_n[H]$▫ in ▫$K_{m,n}[H]$▫ za poljuben graf ▫$H$▫, če sta le ▫$m$▫ in ▫$n$▫ dovolj veliki.
Ključne besede: teorija grafov, b-kromatično število, krepki produkt, leksikografski produkt, direktni produkt, graph theory, b-chromatic number, strong product, lexicographic product, direct product
Objavljeno v DKUM: 10.07.2015; Ogledov: 1190; Prenosov: 90
URL Povezava na celotno besedilo

4.
The pre-hull number and lexicographic product
Iztok Peterin, 2012, objavljeni znanstveni prispevek na konferenci

Opis: Nedavno sta Polat in Sabidussi v [On the geodesic pre-hull number of a graph, Europ. J. Combin. 30 (2009), 1205--1220] vpeljala invarianto ko-točkovno pred-ovojnično število ▫$mathrm{ph}(G)$▫ grafa ▫$G$▫, ki meri nekonveksnost konveksnega prostora. Vpeljemo podobno invarianto imenovano konveksno pred-ovojnično število, ki je naravna zgornja meja za ko-točkovno pred-ovojnično število. Obe invarianti študiramo na leksikografskem produktu in podamo natančne vrednosti za obe invarianti glede na lastnosti faktorjev.
Ključne besede: matematika, teorija grafov, pred-ovojnično število, geodetska konveksnost, leksikografski produkt, mathematics, graph theory, pre-hull number, geodesic convexity, lexicographic product
Objavljeno v DKUM: 10.07.2015; Ogledov: 1070; Prenosov: 86
URL Povezava na celotno besedilo

5.
The geodetic number of the lexicographic product of graphs
Boštjan Brešar, Tadeja Kraner Šumenjak, Aleksandra Tepeh, 2011, izvirni znanstveni članek

Opis: Množica ▫$S$▫ vozlišč grafa ▫$G$▫ je geodetska, če vsako vozlišče grafa ▫$G$▫ leži na intervalu med dvema vozliščema iz ▫$S$▫. Velikost najmanjše geodetske množice grafa ▫$G$▫ se imenuje geodetsko število ▫$g(G)$▫ grafa ▫$G$▫. V članku dokažemo, da geodetsko število leksikografskega produkta ▫$G circ H$▫, kjer ▫$H$▫ ni poln graf, leži med 2 in ▫$3g(G)$▫. Okarakteriziramo vse grafe ▫$G$▫ in ▫$H$▫, za katere je ▫$G circ H = 2$▫, kot tudi leksikografske produkte ▫$T circ H$▫, za katere je ▫$g(T circ H) = 3g(G)$▫, kjer je ▫$T$▫ izomorfen drevesu. Z uporabo novega koncepta geodominantnih trojic grafa ▫$G$▫ najdemo formulo, ki določi točno geodetsko število ▫$G circ H$▫, kjer je ▫$G$▫ poljuben graf in ▫$H$▫ graf, ki ni poln.
Ključne besede: matematika, teorija grafov, leksikografski produkt, geodetsko število, geodominantna trojica, mathematics, graph theory, lexicographic product, geodetic number, geodominating triple
Objavljeno v DKUM: 10.07.2015; Ogledov: 1137; Prenosov: 91
URL Povezava na celotno besedilo

6.
Rainbow domination in the lexicographic product of graphs
Tadeja Kraner Šumenjak, Douglas F. Rall, Aleksandra Tepeh, 2013, izvirni znanstveni članek

Opis: Preslikava iz množice vozlišč grafa ▫$G$▫ v potenčno množico množice ▫${1,2,dots, k}$▫ se imenuje ▫$k$▫-mavrična dominantna funkcija, če za poljubno vozlišče ▫$v$▫ z lastnostjo ▫$f(v) = emptyset$▫ velja ▫${1,dots,k} = bigcup_{u in N(v)}f(u)$▫. Obravnavamo ▫$k$▫-mavrično dominantno število grafa ▫$G$▫, ▫$gamma_{rk}(G)$▫, ki je minimalna vsota (po vseh vozliščih grafa ▫$G$▫) moči podmnožic, ki so vozliščem dodeljena s ▫$k$▫-mavrično dominantno funkcijo. V članku se osredotočimo na 2-mavrično dominantno število leksikografskega produkta grafov in dokažemo natančno spodnjo in zgornjo mejo za to število. Dejansko pokažemo natančno vrednost za ▫$gamma_{r2}(G circ H)$▫, razen v primeru, ko je ▫$gamma_{r2}(H) = 3$▫ in obstaja taka minimalna 2-mavrična dominantna funkcija grafa $H$, ki nekemu vozlišču v grafu ▫$H$▫ dodeli oznako ▫${1,2}$▫.
Ključne besede: dominacija, popolna dominacija, mavrična dominacija, leksikografski produkt, domination, total domination, rainbow domination, lexicographic product
Objavljeno v DKUM: 10.07.2015; Ogledov: 1355; Prenosov: 114
URL Povezava na celotno besedilo

7.
On the Roman domination in the lexicographic product of graphs
Tadeja Kraner Šumenjak, Polona Repolusk, Aleksandra Tepeh, 2012, izvirni znanstveni članek

Opis: A Roman dominating function of a graph ▫$G = (V,E)$▫ is a function ▫$f colon V to {0,1,2}$▫ such that every vertex with ▫$f(v) = 0$▫ is adjacent to some vertex with ▫$f(v) = 2$▫. The Roman domination number of ▫$G$▫ is the minimum of ▫$w(f) = sum_{v in V}f(v)$▫ over all such functions. Using a new concept of the so-called dominating couple we establish the Roman domination number of the lexicographic product of graphs. We also characterize Roman graphs among the lexicographic product of graphs.
Ključne besede: teorija grafov, rimska dominacija, popolna dominacija, leksikografski produkt, graph theory, Roman domination, total domination, lexicographic product
Objavljeno v DKUM: 10.07.2015; Ogledov: 1844; Prenosov: 110
URL Povezava na celotno besedilo

8.
On the Roman domination in the lexicographic product graphs
Polona Repolusk, Tadeja Kraner Šumenjak, Aleksandra Tepeh, 2011, objavljeni povzetek znanstvenega prispevka na konferenci

Ključne besede: graph theory, lexicographic product, Roman domination function, Roman dimination number
Objavljeno v DKUM: 07.06.2012; Ogledov: 1831; Prenosov: 82
URL Povezava na celotno besedilo

Iskanje izvedeno v 0.07 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici