SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 4 / 4
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Komutirajoče preslikave trikotnih algeber
Bojan Trebežnik, 2011, diplomsko delo

Opis: V diplomskem delu definiramo pojem trikotne algebre. Dokažemo nekatere osnovne lastnosti in podamo osnovne primere trikotnih algeber, med katerimi sta najpomembnejši algebra zgornje trikotnih matrik Tn(R) in gnezdna algebra T(N). V nadaljevanju se ukvarjamo s komutirajočimi preslikavami trikotnih algeber. Preslikava f algebre A je komutirajoča, če velja f(a)a = af(a) za vsak a ∈ A. Zanima nas oblika komutirajoče linearne preslikave trikotne algebre. Glavni cilj tretjega poglavja je poiskati tak razred trikotnih algeber, katerih vse komutirajoče linearne preslikave imajo standardno obliko. Proučujemo tudi komutirajočo sled poljubne bilinearne preslikave B : U × U → U trikotne algebre U. Zanima nas oblika preslikave x → B(x, x), ki zadošča pogoju B(x, x)x−xB(x, x) = 0 za vsak x ∈ U. Naš cilj je poiskati tak razred trikotnih algeber, katerih vse komutirajoče sledi bilinearnih preslikav imajo standardno obliko.
Ključne besede: Trikotna algebra, algebra zgornje trikotnih matrik, gnezdna algebra, komutirajoča preslikava, komutirajoča sled bilinearne preslikave.
Objavljeno: 07.07.2011; Ogledov: 2164; Prenosov: 103
.pdf Celotno besedilo (353,46 KB)

2.
Posebne funkcionalne enačbe na prakolobarjih
Nina Peršin, 2013, doktorska disertacija

Opis: V doktorski disertaciji so obravnavane funkcionalne enačbe, ki so v zvezi z odvajanji, centralizatorji in sorodnimi preslikavami na prakolobarjih. Med slovenskimi matematiki se je s tem področjem matematike v osemdesetih letih prejšnjega stoletja začel prvi ukvarjati J. Vukman, sledili so M. Brešar, B. Zalar, B. Hvala in v novejšem času M. Fošner, D. Benkovič, D. Eremita, I. Kosi-Ulbl in A. Fošner. Osnovno sredstvo pri reševanju tovrstnih funkcionalnih enačb je uporaba teorije funkcijskih identitet. Nekoliko natančneje pojasnimo omenjene pojme. Aditivna preslikava D, ki slika poljuben kolobar R vase, je odvajanje, če velja D(xy) = D(x)y + xD(y) za vsak par x, y iz R in je jordansko odvajanje, če velja D(x^2)=D(x)x +xD(x). Očitno je, da je vsako odvajanje tudi jordansko odvajanje, obratno pa v splošnem ne velja. I. N. Herstein je leta 1957 dokazal, da je vsako jordansko odvajanje na prakolobarju s karakteristiko različno od dva, odvajanje. V doktorski disertaciji se najprej osredotočimo na funkcionalne enačbe, ki so v zvezi z odvajanji. Obravnavali smo funkcionalni enačbi D(x^3=D(x^2)x + x^2D(x) in D(x^3=D(x)x^2+ xD(x^2),kjer je D aditivna preslikava, ki slika prakolobar s primernimi omejitvami glede karakteristike vase. Dokazali smo, da je D odvajanje. Nadalje poiščemo tudi rešitev funkcionalne enačbe 2D(x^(m+n+1))=(m+n+1)(x^mD(x)x^n+x^nD(x)x^m), kjer sta m in n fiksni naravni števili in D neničelna aditivna preslikava, ki slika prakolobar s primernimi omejitvami glede karakteristike vase. Dokažemo, da je D odvajanje in R komutativen kolobar. V tretjem poglavju so obravnavane funkcionalne enačbe, ki so v zvezi s centralizatorji. Aditivna preslikava T, ki slika poljuben kolobar R vase, je levi (desni) centralizator, če je T(xy)=T(x)y (T(xy)=xT(y)) za vsak par x, y iz R. V prvem podpoglavju tega razdelka je obravnavana funkcionalna enačba 2T(x^(m+n+1))=x^mT(x)x^n +x^nT(x)x^m na prakolobarju s primernimi omejitvami glede karakteristike, kjer sta sta m in n fiksni nenegativni celi števili in m+n je različno od 0. Dokažemo, da je T dvostranski centralizator. Aditivna preslikava T, ki slika poljuben kolobar R vase, je (m,n)-jordanski centralizator, če je (m+n)T(x^2)=mT(x)x+nxT(x) za vsak x iz R, kjer sta m in n fiksni nenegativni celi števili in m+n je različno od 0. Ta pojem je leta 2010 vpeljal J. Vukman ter med drugim tudi dokazal, da vsak (m,n)-jordanski centralizator na poljubnem kolobarju R zadošča pogoju 2(m+n)^2T(xyx) = mnT(x)xy + m(2m + n)T(x)yx -mnT(y)x^2 + 2mnxT(y)x - mnx^2T(y) + n(m + 2n)xyT(x) + mnyxT(x) za vsak par x, y iz R. Če v tej identiteti piŠemo y = x, dobimo naslednjo funkcionalno enačbo 2(m+n)^2T(x3)=m(2m+n)T(x)x^2+2mnxT(x)x+n(m+2n)x^2T(x), ki je obravnavana v zadnjem delu doktorske disertacije na prakolobarju s primernimi omejitvami glede karakteristike, kjer sta m in n fiksni naravni števili. Dokažemo, da je T dvostranski centralizator. V zaključnem poglavju podamo odprta vprašanja o funkcionalnih enačbah, ki so v zvezi s posplošenimi odvajanji in (theta, phi)- odvajanji, kjer sta theta in phi avtomorfzma na kolobarju R.
Ključne besede: aditivna preslikava, desni (levi) centralizator, d-prosta množica, dvostranski centralizator, funkcijska identiteta, jordansko odvajanje, komutirajoča preslikava, (m, n)-jordanski centralizator, odvajanje, polprakolobar, prakolobar, standardna rešitev.
Objavljeno: 05.12.2013; Ogledov: 1150; Prenosov: 81
.pdf Celotno besedilo (427,66 KB)

3.
Commuting and centralizing mappings in prime rings
Joso Vukman, 1990, izvirni znanstveni članek

Opis: Naj bo ▫$R$▫ kolobar. Preslikava ▫$F: R to R$▫ je komutirajoča na ▫$R$▫, če je ▫$[ F(x),x] = 0$▫ za vsak ▫$x in R$▫. Glavni rezultat: naj bo ▫$R$▫ prakolobar s karakteristiko različno od dva. Denimo, da obstaja od nič različna derivacija ▫$D: R to R$▫, pri kateri je preslikava ▫$x mapsto [ D(x),x]$▫, komutirajoča na ▫$R$▫. V tem primeru je ▫$R$▫ komutativen.
Ključne besede: matematika, asociativni kolobarji in algebre, kolobar, prakolobar, odvajanje, jordansko odvajanje, notranje odvajanje, komutirajoča preslikava, centralizirajoča preslikava, mathematics, associative rings and algebras, prime ring, derivation, Jordan derivation, inner derivation, commuting mapping, centralizing mapping
Objavljeno: 10.07.2015; Ogledov: 395; Prenosov: 33
URL Povezava na celotno besedilo

4.
Commuting maps: a survey
Matej Brešar, 2004, pregledni znanstveni članek

Opis: Preslikava ▫$f$▫ na kolobarju ▫$A$▫ je komutirajoča, če ▫$f(x)$▫ komutira z ▫$x$▫ za vsak ▫$x$▫ iz ▫$A$▫. Članek opiše razvoj teorije komutirajočih preslikav in njenih aplikacij. Obravnavane so naslednje teme: komutirajoča odvajanja, komutirajoče aditivne preslikave, komutirajoče sledi mulitiaditivnih preslikav, različne posplošitve pojma komutirajočih preslikav, in aplikacije rezultatov o komutirajočih preslikavah na različnih področjih, predvsem v teoriji Liejevih algeber.
Ključne besede: matematika, algebra, prakolobar, komutirajoča preslikava, funkcijska identiteta, Banachova algebra, odvajanje, Liejeve algebre, linearni ohranjevalci, mathematics, algebra, commuting map, functional identity, prime ring, Banach algebra, derivation, Lie theory, linear preservers
Objavljeno: 10.07.2015; Ogledov: 471; Prenosov: 11
URL Povezava na celotno besedilo

Iskanje izvedeno v 0.11 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici