SLO | ENG

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 1 / 1
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
An attempt to predict conformation and fatness in bulls by means of artificial neural networks using weight, age and breed composition information
Maja Prevolnik, Marjana Novič, Marjeta Čandek-Potokar, Martin Škrlep, Maria Font-I-Furnols, 2015, izvirni znanstveni članek

Opis: The present study aimed to predict conformation and fatness grades in bulls based on data available at slaughter (carcass weight, age and breed proportions) by means of counter-propagation artificial neural networks (ANN). For chemometric analysis, 5893 bull carcasses (n=2948 and n=2945 for calibration and testing of models, respectively) were randomly selected from the initial data set (n≈27000; one abattoir, one classifier, three years period). Different ANN models were developed for conformation and fatness by varying the net size and the number of epochs. Tested net parameters did not have a notable effect on models’ quality. Respecting the tolerance of ±1 subclass between the actual and predicted value (as allowed by European Union legislation for on-spot checks), the matching between the classifier and ANN grading was 73.6 and 64.9% for conformation and fatness, respectively. Success rate of prediction was positively related to the frequency of carcasses in the class.
Ključne besede: govedo, goveje meso, mastnost mesa, struktura mesa, klavna teža, ANN modeli, modeli za napovedovanje
Objavljeno: 24.07.2017; Ogledov: 60; Prenosov: 1
.pdf Polno besedilo (1,12 MB)

Iskanje izvedeno v 0.05 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici