| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 1 / 1
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Napovedovanje časovnih vrst z uporabo povratnih nevronskih mrež
Niko Uremovič, 2020, diplomsko delo

Opis: V diplomskem delu predstavimo napovedovanje multivariatnih časovnih vrst z uporabo povratnih nevronskih mrež, ter primernost pristopa k napovedovanju preizkusimo na področju energetike. Za pametno krmiljenje električnih naprav je namreč nujno potrebno poznavanje posledic, ki jih imajo naše akcije na stanje naprav in njihove okolice. Stanje naprav definira več spremenljivk, zato spreminjanje stanja skozi čas opisuje multivariatna časovna vrsta. Za električno napravo grelnik vode pripravimo napovedni model, ki temelji na povratni nevronski mreži arhitekture LSTM. Ker pa se lastnosti naprave in s tem opisujoče časovne vrste lahko s časom spreminjajo, moramo za ohranjanje natančnostosti napovednega modela le-tega sproti prilagajati. V diplomskem delu predstavimo različne strategije sprotnega učenja modela in primerjamo njihovo učinkovitost na napovednem modelu za grelnik vode.
Ključne besede: Multivariatne časovne vrste, napovedovanje časovnih vrst, povratne nevronske mreže, katastrofalno pozabljanje
Objavljeno: 03.11.2020; Ogledov: 260; Prenosov: 31
.pdf Celotno besedilo (1,50 MB)

Iskanje izvedeno v 0.05 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici