| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 10 / 43
Na začetekNa prejšnjo stran12345Na naslednjo stranNa konec
1.
Število kromatične stabilnosti povezav
Tjaša Kos, 2020, magistrsko delo

Opis: V magistrskem delu predstavimo število kromatične stabilnosti povezav grafa $G$. Najprej definiramo osnovne pojme teorije grafov in dokažemo nekaj lastnosti števila kromatične stabilnosti povezav. Opišemo grafe Mycielskega, njihovo konstrukcijo ter dokažemo, da je kromatično število grafa Mycielskega $M(G)$ za ena večje od kromatičnega števila grafa $G$. Nato se osredotočimo na število kromatične stabilnosti povezav posebnih družin grafov. Raziskujemo disjunktno unijo grafov, kartezični produkt, spoj grafov ter posebne družin grafov, ki jih dobimo s spojem nekaterih družin grafov. V nadaljevanju opišemo meje števila kromatične stabilnosti povezav. Dokažemo več spodnjih in zgornjih mej za $es_{\chi}(G)$. Osredotočimo se tudi na rezultate tipa Nordhaus-Gaddum in dokažemo zgornjo mejo za vsoto števila kromatične stabilnosti povezav grafa $G$ in njegovega komplementa $\overline{G}$. Nazadnje raziskujemo grafe z $es_{\chi}(G)=1$. Dokažemo, da je $es_{\chi}(G)=1$ natanko tedaj, ko je vezano kromatično število enako $1$. Še več, predstavimo več potrebnih pogojev za graf $G$ z $es_{\chi}(G)=1$.
Ključne besede: število kromatične stabilnosti povezav, kromatično število, dvodelni grafi, kartezični produkt grafov, grafi Mycielskega, neenakost tipa Nordhaus-Gaddum, vezano kromatično število
Objavljeno: 29.10.2020; Ogledov: 205; Prenosov: 23
.pdf Celotno besedilo (2,21 MB)

2.
Povezanost v produktih grafov
Sandra Cigula, 2016, magistrsko delo

Opis: V tej nalogi bomo obravnavali pojma povezanost po povezavah in povezanost po vozliščih v produktih grafov. Drugi cilj bo opisati strukturo in ostale lastnosti najmanjših presečnih množic vozlišč in najmanjših presečnih množic povezav v produktih grafov. Osredotočili se bomo predvsem na kartezični, direktni, krepki in leksikografski produkt grafov. Zanimalo nas bo, kako izraziti povezanost produkta z lastnostmi posameznih faktorjev produkta, kot so najmanjša stopnja, red grafa in povezanost. Pri direktnem produktu grafov bomo ugotovili, da je povezanost po povezavah odvisna od povezanosti faktorjev, pa tudi od tega, kako daleč sta faktorja $G$ in $H$ od tega, da bi bila dvodelna. Nato bomo obravnavali velikost in strukturo najmanjših presečnih množic povezav kartezičnih produktov grafov. Podan bo dokaz trditve $lambda(G , Box , H)= textrm{min}left{lambda(G)left|V(H)right|,lambda(H)left|V(G)right|,delta(G)+delta(H)right}.$ Dokaz podobne trditve za povezanost po vozliščih kartezičnega produkta bo naveden v nadaljevanju. Na koncu bomo obravnavali velikost in strukturo najmanjših presečnih množic povezav krepkih produktov grafov in povezanost v leksikografskem produktu.
Ključne besede: produkti grafov, kartezični produkt, direktni produkt, krepki produkt, leksikografski produkt, povezanost.
Objavljeno: 23.08.2016; Ogledov: 891; Prenosov: 114
.pdf Celotno besedilo (3,58 MB)

3.
A note on the chromatic number of the square of the Cartesian product of two cycles
Zehui Shao, Aleksander Vesel, 2013, kratki znanstveni prispevek

Opis: The square ▫$G^2$▫ of a graph ▫$G$▫ is obtained from ▫$G$▫ by adding edges joining all pairs of nodes at distance 2 in ▫$G$▫. In this note we prove that ▫$chi((C_mBox C_n)^2) le 6$ for $m, n ge 40$▫. This confirms Conjecture 19 stated in [É. Sopena, J. Wu, Coloring the square of the Cartesian product of two cycles, Discrete Math. 310 (2010) 2327-2333].
Ključne besede: matematika, teorija grafov, kromatično število, kartezični produkt, označevanje grafov, kvadrat grafa, mathematics, graph theory, chromatic number, Cartesian product, graph labeling, square if a graph
Objavljeno: 10.07.2015; Ogledov: 764; Prenosov: 66
URL Povezava na celotno besedilo

4.
A note on the domination number of the Cartesian products of paths and cycles
Polona Repolusk, Janez Žerovnik, 2011

Opis: Z uporabo algebraičnega pristopa implementiramo konstantni algoritem za računanje dominantnega števila kartezičnih produktov poti in ciklov. Podamo formule za dominantna števila ▫$gamma(P_n Box C_k)$▫ (za ▫$k leq 11$▫, ▫$n in {mathbb N}$)▫ in dominantna števila ▫$gamma(C_n Box P_k)$▫ in ▫$gamma(C_n Box C_k)$▫ (za ▫$k leq 6$▫, ▫$n in {mathbb N}$▫).
Ključne besede: teorija grafov, kartezični produkt, grid, torus, dominacija, algebra poti, konstantni algoritem, graph theory, Cartesian product, grid graph, torus, graph domination, path algebra, constant time algorithm
Objavljeno: 10.07.2015; Ogledov: 933; Prenosov: 24
URL Povezava na celotno besedilo

5.
Vizing's conjecture: a survey and recent results
Boštjan Brešar, Paul Dorbec, Wayne Goddard, Bert L. Hartnell, Michael A. Henning, Sandi Klavžar, Douglas F. Rall, 2012, pregledni znanstveni članek

Opis: Vizingova domneva iz leta 1968 trdi, da je dominacijsko število kartezičnega produkta dveh grafov vsaj tako veliko, kot je produkt dominacijskih števil faktorjev. V članku naredimo pregled različnih pristopov k tej osrednji domnevi iz teorije grafovske dominacije. Ob tem dokažemo tudi nekaj novih rezultatov. Tako so na primer pokazane nove lastnosti minimalnega protiprimera, dokazana je tudi nova spodnja meja za produkte grafov brez induciranega ▫$K_{1,3}$▫ s poljubnimi grafi. Skozi celoten članek so obravnavani pripadajoči odprti problemi, vprašanja in sorodne domneve.
Ključne besede: matematika, teorija grafov, kartezični produkt, dominacija, Vizingova domneva, mathematics, graph theory, Caretesian product, domination, Vizing's conjecture
Objavljeno: 10.07.2015; Ogledov: 793; Prenosov: 67
URL Povezava na celotno besedilo

6.
The k-independence number of direct products of graphs and Hedetniemi's conjecture
Simon Špacapan, 2011, izvirni znanstveni članek

Opis: The ▫$k$▫-independence number of ▫$G$▫, denoted as ▫$alpha_k(G)$▫, is the size of a largest ▫$k$▫-colorable subgraph of ▫$G$▫. The direct product of graphs ▫$G$▫ and ▫$H$▫, denoted as ▫$G times H$▫, is the graph with vertex set ▫$V(G) times V(H)$▫, where two vertices ▫$(x_1, y_1)$▫ and ▫$(x_2, y_2)$▫ are adjacent in ▫$G times H$▫, if ▫$x_1$▫ is adjacent to ▫$x_2$▫ in ▫$G$▫ and ▫$y_1$▫ is adjacent to ▫$y_2$▫ in ▫$H$▫. We conjecture that for any graphs ▫$G$▫ and ▫$H$▫, ▫$$alpha_k(G times H) ge alpha_k(G)|V(H)| + alpha_k(H)|V(G)| - alpha_k(G) alpha_k(H).$$▫ The conjecture is stronger than Hedetniemi's conjecture. We prove the conjecture for ▫$k = 1, 2$▫ and prove that ▫$alpha_k(G times H) ge alpha_k(G)|V(H)| + alpha_k(H)|V(G)| - alpha_k(G) alpha_k(H)$▫ holds for any ▫$k$▫.
Ključne besede: matematika, teorija grafov, neodvisnostno število, kartezični produkt grafov, mathematics, graph theory, independence number, Cartesian product of graphs
Objavljeno: 10.07.2015; Ogledov: 795; Prenosov: 19
URL Povezava na celotno besedilo

7.
Roman domination number of the Cartesian products of paths and cycles
Polona Repolusk, Janez Žerovnik, 2011, izvirni znanstveni članek

Opis: Rimska dominacija je zgodovinsko utemeljena različica običajne dominacije, pri kateri vozlišča grafa označimo z oznakami iz množice ▫${0,1,2}$▫ tako, da ima vsako vozlišče z oznako 0 soseda z oznako 2. Najmanjšo izmed vsot oznak grafa imenujemo rimsko dominantno število grafa. Z uporabo algebraičnega pristopa dobimo konstantni algoritem za računanje rimskega dominantnega števila posebne vrste poligrafov: rota- in fasciagrafov. V posebnih primerih izračunamo formule za rimsko dominanto število kartezičnega produkta poti in ciklov ▫$P_n Box P_k$▫, ▫$P_n Box C_k$▫ za ▫$k leq 8$▫ in ▫$n in {mathbb N}$▫ ter za ▫$C_n Box P_k$▫ in ▫$C_n Box C_k$▫ za ▫$k leq 5$▫, ▫$n in {mathbb N}$▫. Dodan je seznam rimskih grafov med kartezičnimi produkti zgoraj omenjenih poti in ciklov.
Ključne besede: teorija grafov, kartezični produkt, rimsko dominantno število, poligrafi, algebra poti, graph theory, Roman domination number, Cartesian product, polygraphs, path algebra
Objavljeno: 10.07.2015; Ogledov: 972; Prenosov: 50
URL Povezava na celotno besedilo

8.
Retracts of products of chordal graphs
Boštjan Brešar, Jérémie Chalopin, Victor Chepoi, Matjaž Kovše, Arnaud Labourel, Yann Vaxès, 2010

Opis: We characterize the graphs ▫$G$▫ that are retracts of Cartesian products of chordal graphs. We show that they are exactly the weakly modular graphs that do not contain ▫$K_{2;3}$▫, ▫$k$▫-wheels ▫$W_k$▫, and ▫$k$▫-wheels minus one spoke T$W_k^- ; (k ge 4)$T as induced subgraphs. We also show that these graphs ▫$G$▫ are exactly the cage-amalgamation graphs introduced by Brešar and Tepeh Horvat (2009); this solves the open question raised by these authors. Finally, we prove that replacing all products of cliques of $G$ by products of "solid" simplices, we obtain a polyhedral cell complex which, endowed with an intrinsic Euclidean metric, is a CAT(0) space. This generalizes similar results about median graphs as retracts of hypercubes (products of edges) and median graphs as 1-skeletons of CAT(0) cubical complexes.
Ključne besede: teorija grafov, graf, retrakt, zastražena amalgamacija, tetiven graf, kartezični produkt grafov, medianski graf, graph theory, graph, retract, gated amalgamation, chordal graph, Cartesian product of graphs, median graph
Objavljeno: 10.07.2015; Ogledov: 576; Prenosov: 81
URL Povezava na celotno besedilo

9.
Geodetic sets in graphs
Boštjan Brešar, Matjaž Kovše, Aleksandra Tepeh, 2011, samostojni znanstveni sestavek ali poglavje v monografski publikaciji

Opis: Na kratko so povzeti rezultati o geodetskih množicah v grafih. Po pregledu rezultatov iz prejšnjih raziskav se posvetimo geodetskemu številu in sorodnim invariantam v grafih. Podrobno so obravnavane geodetske množice kartezičnih produktov grafov in geodetske množice v medianskih grafih. Predstavljen je tudi algoritmični vidik in povezava z nekaterimi ostalimi koncepti iz teorije konveksnih in intervalskih struktur v grafih.
Ključne besede: matematika, teorija grafov, geodetsko število, geodetska množica, kartezični produkt, medianski graf, mejna množica, mathematics, graph theory, geodetic number, geodetic set, Cartesian product, median graph, boundary set
Objavljeno: 10.07.2015; Ogledov: 380; Prenosov: 23
URL Povezava na celotno besedilo

10.
The distinguishing chromatic number of Cartesian products of two complete graphs
Janja Jerebic, Sandi Klavžar, 2010, objavljeni znanstveni prispevek na konferenci

Opis: Označitev grafa ▫$G$▫ je razlikovalna, če jo ohranja le trivialni avtomorfizem grafa ▫$G$▫. Razlikovalno kromatično število grafa ▫$G$▫ je najmanjše naravno število, za katero obstaja razlikovalna označitev grafa, ki je hkrati tudi dobro barvanje. Za vse ▫$k$▫ in ▫$n$▫ je določeno razlikovalno kromatično število kartezičnih produktov ▫$K_kBox K_n$▫. V večini primerov je enako kromatičnemu številu, kar med drugim odgovori na vprašanje Choia, Hartkeja and Kaula, ali obstajajo še kakšni drugi grafi, za katere velja enakost.
Ključne besede: teorija grafov, razlikovalno kromatično število, grafovski avtomorfizem, kartezični produkt grafov, graph theory, distinguishing chromatic number, graph automorphism, Cartesian product of graphs
Objavljeno: 10.07.2015; Ogledov: 548; Prenosov: 71
URL Povezava na celotno besedilo

Iskanje izvedeno v 0.16 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici