| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 4 / 4
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
2.
Pametni pralni stroj
Matej Kebrič, 2012, diplomsko delo

Opis: V diplomskem delu je predstavljen idejni koncept pametnega pralnega stroja. Kot ključni problem je izpostavljeno polnjenje pralnega stroja z različnim perilom in določitev ustreznega pralnega programa, ki ne bo poškodoval perila. Perilo različnih tkanin in barv zahteva različne programe. Predstavljena je idejna rešitev problema v obliki avtomatizacije tega procesa s pomočjo kamere in računalniškega programa za odločanje o izbiri programa. Izvedena je bila ergonomska študija na podlagi katere smo oblikovali pralni stroj, grafično podobo in koncept upravljanja. Rezultat diplomskega dela je pametni pralni stroj, ki je predstavljen v prodajnem katalogu s katerim bi se izdelek predstavljal na tržišču.
Ključne besede: industrijsko oblikovanje, dizajn, ergonomija, pametne naprave, pralni stroj, pranje perila, inteligentni sistemi, grafična podoba, uporabniški vmesnik, grafični uporabniški vmesnik, SolidWorks
Objavljeno: 04.07.2012; Ogledov: 1589; Prenosov: 159
.pdf Celotno besedilo (77,85 MB)

3.
Model inteligentnega CAD/CAM sistema za programiranje CNC obdelovalnih strojev
Simon Klančnik, 2012, doktorska disertacija

Opis: Sodobni obdelovalni sistemi so visoko avtomatizirani, zahtevajo veliko fleksibilnost in težijo k popolni avtonomnosti. Ker je programiranje obdelovalnih strojev zelo kompleksen proces, ki ga sestavlja več med seboj odvisnih problemov, ga kljub velikim naporom do danes še ni uspelo avtomatizirati. Pregled raziskav je pokazal, da so do sedaj razviti sistemi zelo ozko omejeni in lahko strokovnjaku služijo le kot pripomoček, pri pripravi postopka obdelave. V disertaciji predlagamo samodejno programiranje CNC-obdelovalnih strojev s pomočjo umetne inteligence. Razvita inteligenca je sposobna, ne le delno, ampak v celoti, reševati kompleksen problem samodejnega programiranja obdelovalnih strojev. Sistem na podlagi CAD-modela izdelka samodejno, brez pomoči strokovnjaka, pripravi NC-program obdelave, in sicer tako, da je obdelava varna, pravilna, časovno učinkovita in hkrati zadosti določenim tehnološkim zahtevam obdelave. Inteligentni CAD/CAM-sistem za svoje delovanje uporablja skupinsko inteligenco, NSGA-II večkriterijsko optimizacijo in usmerjeno nevronsko mrežo, hkrati pa koristi prednosti ter moč informatizacije in tako s porazdeljeno arhitekturo dosega večjo učinkovitost pri celovitem reševanju tako kompleksnega problema. Sistem je sestavljen iz napovedovalnega in evalvacijskega modula. V napovedovalnem modulu umetna inteligenca predlaga rešitve, ki vsebujejo informacije o trajektorijah rezov, izbranih orodjih in predlaganih rezalnih parametrih. Evalvacijski modul, na podlagi razvitih simulacijskih modelov, oceni predlagane rešitve glede na geometrijski, tehnološki in časovni kriterij ter kriterij učinkovitosti obdelave. V okviru raziskave smo razvili diskreten in tudi zvezen simulacijski model, ki ga razviti sistem uporablja pri iskanju optimalne rešitve. Predlagani sistem je v splošnem primeren za različne vrste obdelav, v disertaciji pa se zaradi obsega dela pri testiranjih omejimo zgolj na rezkanje. Rezultati testiranj so potrdili, da je z uporabo metod umetne inteligence mogoče samodejno programirati obdelovalne stroje.
Ključne besede: skupinska inteligenca, optimizacija z rojem delcev, nevronske mreže, genetski algoritmi, NSGA-II optimizacija, CAD/CAM-sistem, NC-programiranje, API-vmesnik, CNC-obdelovalni stroj, inteligentni obdelovalni sistem, računalniška simulacija, večkriterijska optimizacija
Objavljeno: 12.04.2012; Ogledov: 3396; Prenosov: 453
.pdf Celotno besedilo (18,28 MB)

4.
Modeliranje in optimizacija CNC obdelav s skupinsko inteligenco
Marko Hrelja, 2015, doktorska disertacija

Opis: Izboljševanje obstoječe proizvodnje in obdelovalnih sistemov zahteva nenehno posodabljanje in integracijo najnovejših tehnologij v proizvodne sisteme. Proizvodnih spremenljivk je čedalje več, s tem pa se povečuje množica podatkov, ki jo moramo obdelati, tu pa velikokrat klasične analitične metode optimizacije odpovedo. Zaradi tega smo prisiljeni bolje izkoristiti razpoložljive proizvodne vire, zato pa moramo poseči po naprednejših pristopih reševanja problemov. Za reševanje zahtevnih problemov čedalje pogosteje uporabljajo različna področja umetne inteligence, še zlasti strojnega učenja. Pregled do sedaj opravljenih raziskav je pokazal, da so obstoječi razviti sistemi precej ozko usmerjeni. V disertaciji predlagamo popolnoma nov pristop k modeliranju CNC-obdelav s pomočjo novega gravitacijskega iskalnega algoritma (GSA), ki spada med metode skupinske inteligence. Razviti inteligentni sistem deluje na osnovi osnovnih Newtonovih fizikalnih zakonov oziroma na osnovi interakcij med masnimi telesi v prostoru. Za primerjavo in potrditev ustreznosti rezultatov doktorske disertacije smo uporabili tudi metodo modeliranja z rojem delcev (PSO). Primerjava je pokazala, da je GSA algoritem primeren za modeliranje obdelav z odrezovanjem, saj so odstopanja od eksperimentalnih podatkov v sprejemljivih mejah. Dobljeni modeli so dobro opisali postopek odrezovanja materiala s struženjem, ki smo ga uporabili kot postopek odrezovanja. Posebej velja omeniti, da je GSA algoritem v najslabšem primeru vsaj dvakrat hitrejši od enakovrednega PSO algoritma. Dobljen model CNC-obdelave smo nato uporabili za večkriterijsko optimiranje obdelovalnih parametrov: optimalne hrapavosti obdelane površine, rezalnih sil in časovne obstojnosti orodja. Vsaka izmed omenjenih odvisnih spremenljivk prispeva k optimalnemu delovanju CNC-obdelovalnega stroja, kar znižuje stroške proizvodnje. Večkriterijsko optimiranje smo izvedli s pomočjo NSGA-II algoritma. Za optimiranje smo morali določiti tudi omejitve. Te smo določili s pomočjo teoretičnih izračunov in jih preverili s pomočjo eksperimentalnih podatkov. Zaradi obsega dela smo se omejili na struženje, hkrati pa so v delu predstavljene osnove prilagoditev za uporabo metod na ostalih obdelovalnih strojih, saj je predlagan pristop univerzalen.
Ključne besede: inteligentni obdelovalni sistem, CNC-obdelovalni stroj, odrezovanje, struženje, skupinska inteligenca, optimizacija z rojem delcev, gravitacijski iskalni algoritem, genetski algoritmi, večkriterijska optimizacija, NSGA-II algoritem
Objavljeno: 04.02.2015; Ogledov: 1400; Prenosov: 178
.pdf Celotno besedilo (3,55 MB)

Iskanje izvedeno v 0.1 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici