1. NMDA receptor inhibition increases, synchronizes, and stabilizes the collective pancreatic beta cell activity : insights through multilayer network analysisMarko Šterk, Lidija Križančić Bombek, Maša Skelin, Marjan Rupnik, Marko Marhl, Andraž Stožer, Marko Gosak, 2021, izvirni znanstveni članek Opis: NMDA receptors promote repolarization in pancreatic beta cells and thereby reduce glucose-stimulated insulin secretion. Therefore, NMDA receptors are a potential therapeutic target for diabetes. While the mechanism of NMDA receptor inhibition in beta cells is rather well understood at the molecular level, its possible effects on the collective cellular activity have not been addressed to date, even though proper insulin secretion patterns result from well-synchronized beta cell behavior. The latter is enabled by strong intercellular connectivity, which governs propagating calcium waves across the islets and makes the heterogeneous beta cell population work in synchrony. Since a disrupted collective activity is an important and possibly early contributor to impaired insulin secretion and glucose intolerance, it is of utmost importance to understand possible effects of NMDA receptor inhibition on beta cell functional connectivity. To address this issue, we combined confocal functional
multicellular calcium imaging in mouse tissue slices with network science approaches. Our results revealed that NMDA receptor inhibition increases, synchronizes, and stabilizes beta cell activity without affecting the velocity or size of calcium waves. To explore intercellular interactions more precisely, we made use of the multilayer network formalism by regarding each calcium wave as an individual network layer, with weighted directed connections portraying the intercellular propagation. NMDA receptor inhibition stabilized both the role of wave initiators and the course of waves. The findings obtained with the experimental antagonist of NMDA receptors, MK-801, were additionally validated with dextrorphan, the active metabolite of the approved drug dextromethorphan, as well as with experiments on NMDA receptor KO mice. In sum, our results provide additional and new evidence for a possible
role of NMDA receptor inhibition in treatment of type 2 diabetes and introduce the multilayer network paradigm as a general strategy to examine effects of drugs on connectivity in multicellular systems. Ključne besede: pancreas, beta cells, insulin, Islets of Langerhans Objavljeno v DKUM: 29.11.2024; Ogledov: 0; Prenosov: 0 Celotno besedilo (4,64 MB) Gradivo ima več datotek! Več... |
2. Mitochondrial dysfunction in pancreatic alpha and beta cells associated with type 2 diabetes mellitusVladimir Grubelnik, Jan Zmazek, Rene Markovič, Marko Gosak, Marko Marhl, 2020, izvirni znanstveni članek Opis: Type 2 diabetes mellitus is a complex multifactorial disease of epidemic proportions. It involves genetic and lifestyle factors that lead to dysregulations in hormone secretion and metabolic homeostasis. Accumulating evidence indicates that altered mitochondrial structure, function, and particularly bioenergetics of cells in different tissues have a central role in the pathogenesis of type 2 diabetes mellitus. In the present study, we explore how mitochondrial dysfunction impairs the coupling between metabolism and exocytosis in the pancreatic alpha and beta cells. We demonstrate that reduced mitochondrial ATP production is linked with the observed defects in insulin and glucagon secretion by utilizing computational modeling approach. Specifically, a 30-40% reduction in alpha cells' mitochondrial function leads to a pathological shift of glucagon secretion, characterized by oversecretion at high glucose concentrations and insufficient secretion in hypoglycemia. In beta cells, the impaired mitochondrial energy metabolism is accompanied by reduced insulin secretion at all glucose levels, but the differences, compared to a normal beta cell, are the most pronounced in hyperglycemia. These findings improve our understanding of metabolic pathways and mitochondrial bioenergetics in the pathology of type 2 diabetes mellitus and might help drive the development of innovative therapies to treat various metabolic diseases. Ključne besede: pancreatic endocrine cells, mathematical model, mitochondrial dysfunction, cellular bioenergetics, diabetes, glucagon, insulin Objavljeno v DKUM: 03.09.2024; Ogledov: 47; Prenosov: 8 Celotno besedilo (1,63 MB) Gradivo ima več datotek! Več... |
3. pH-dependence of glucose- dependent activity of beta cell networks in acute mouse pancreatic tissue sliceSandra Postić, Marko Gosak, Wen-Hao Tsai, Johannes Pfabe, Srdjan Sarikas, Andraž Stožer, Dean Korošak, Shi-Bing Yang, Marjan Rupnik, 2022, izvirni znanstveni članek Opis: Extracellular pH has the potential to affect various aspects of the pancreatic beta cell function. To explain this effect, a number of mechanisms was proposed involving both extracellular and intracellular targets and pathways. Here, we focus on reassessing the influence of extracellular pH on glucose-dependent beta cell activation and collective activity in physiological conditions. To this end we employed mouse pancreatic tissue slices to perform high-temporally resolved functional imaging of cytosolic Ca2+ oscillations. We investigated the effect of either physiological H+ excess or depletion on the activation properties as well as on the collective activity of beta cell in an islet. Our results indicate that lowered pH invokes activation of a subset of beta cells in substimulatory glucose concentrations, enhances the average activity of beta cells, and alters the beta cell network properties in an islet. The enhanced average activity of beta cells was determined indirectly utilizing cytosolic Ca2+ imaging, while direct measuring of insulin secretion confirmed that this enhanced activity is accompanied by a higher insulin release. Furthermore, reduced functional connectivity and higher functional segregation at lower pH, both signs of a reduced intercellular communication, do not necessary result in an impaired insulin release. Ključne besede: insulin secretion, membrane excitability, potassium channels, beta cell network, collective activity, calcium waves, pancreatic islets, pH-dependence Objavljeno v DKUM: 01.07.2024; Ogledov: 149; Prenosov: 4 Celotno besedilo (7,45 MB) Gradivo ima več datotek! Več... |
4. Lipotoxicity in a vicious cycle of pancreatic beta cell exhaustionVladimir Grubelnik, Jan Zmazek, Matej Završnik, Marko Marhl, 2022, izvirni znanstveni članek Opis: Hyperlipidemia is a common metabolic disorder in modern society and may precede hyperglycemia and diabetes by several years. Exactly how disorders of lipid and glucose metabolism are related is still a mystery in many respects. We analyze the effects of hyperlipidemia, particularly free fatty acids, on pancreatic beta cells and insulin secretion. We have developed a computational model to quantitatively estimate the effects of specific metabolic pathways on insulin secretion and to assess the effects of short- and long-term exposure of beta cells to elevated concentrations of free fatty acids. We show that the major trigger for insulin secretion is the anaplerotic pathway via the phosphoenolpyruvate cycle, which is affected by free fatty acids via uncoupling protein 2 and proton leak and is particularly destructive in long-term chronic exposure to free fatty acids, leading to increased insulin secretion at low blood glucose and inadequate insulin secretion at high blood glucose. This results in beta cells remaining highly active in the “resting” state at low glucose and being unable to respond to anaplerotic signals at high pyruvate levels, as is the case with high blood glucose. The observed fatty-acid-induced disruption of anaplerotic pathways makes sense in the context of the physiological role of insulin as one of the major anabolic hormones. Ključne besede: diabetes, insulin secretion, lipids, PEP cycle, uncoupling proteins, mitochondrial dysfunction Objavljeno v DKUM: 20.05.2024; Ogledov: 133; Prenosov: 8 Celotno besedilo (2,47 MB) Gradivo ima več datotek! Več... |
5. Human beta cell functional adaptation and dysfunction in insulin resistance and its reversibilityMaša Skelin, Jan Kopecky, Jurij Dolenšek, Andraž Stožer, 2023, drugi znanstveni članki Opis: Background:
Beta cells play a key role in the pathophysiology of diabetes since their functional adaptation is able to maintain euglycemia in the face of insulin resistance, and beta cell decompensation or dysfunction is a necessary condition for full-blown type 2 diabetes (T2D). The mechanisms behind compensation and decompensation are incompletely understood, especially for human beta cells, and even less is known about influences of chronic kidney disease (CKD) or immunosupressive therapy after transplantation on these processes and the development of posttransplant diabetes.
Summary:
During compensation, beta cell sensitivity to glucose becomes left-shifted, i.e., their sensitivity to stimulation increases, and this is accompanied by enhanced signals along the stimulus-secretion coupling cascade from membrane depolarization to intracellular calcium and the most distal insulin secretion dynamics. There is currently no clear evidence regarding changes in intercellular coupling during this stage of disease progression. During decompensation, intracellular stimulus-secretion coupling remains enhanced to some extent at low or basal glucose concentrations but seems to become unable to generate effective signals to stimulate insulin secretion at high or otherwise stimulatory glucose concentrations. Additionally, intercellular coupling becomes disrupted, lowering the number of cells that contribute to secretion. During progression of CKD, beta cells also seem to drift from a compensatory left-shift to failure, and immunosupressants can further impair beta cell function following kidney transplantation.
Key Messages:
Beta cell stimulus-secretion coupling is enhanced in compensated insulin resistance. With worsening insulin resistance, both intra- and intercellular coupling become disrupted. CKD can progressively disrupt beta cell function, but further studies are needed, especially regarding changes in intercellular coupling. Ključne besede: human beta cell, functional adaptation, dysfunction, insulin resistance Objavljeno v DKUM: 15.04.2024; Ogledov: 201; Prenosov: 25 Celotno besedilo (387,53 KB) Gradivo ima več datotek! Več... |
6. Functional characteristics of hub and wave-initiator cells in ▫$\beta$▫ cell networksMarko Šterk, Jurij Dolenšek, Maša Skelin, Lidija Križančić Bombek, Eva Paradiž, Jasmina Kerčmar, Matjaž Perc, Marjan Rupnik, Andraž Stožer, Marko Gosak, 2023, izvirni znanstveni članek Ključne besede: islets of Langerhans, beta cells, insulin Objavljeno v DKUM: 12.12.2023; Ogledov: 578; Prenosov: 17 Celotno besedilo (4,00 MB) |
7. Fine-tuning cardiac insulin-like growth factor 1 receptor signaling to promote health and longevityMahmoud Abdellatif, Viktoria Herbst, Alexander Martin Heberle, Alina Humnig, Tobias Pendl, Sylvère Durand, Giulia Cerrato, Sebastian J Hofer, Moydul Islam, Julia Voglhuber, Simon Sedej, 2022, izvirni znanstveni članek Opis: Background: The insulin-like growth factor 1 (IGF1) pathway is a key regulator of cellular metabolism and aging. Although its inhibition promotes longevity across species, the effect of attenuated IGF1 signaling on cardiac aging remains controversial.
Methods: We performed a lifelong study to assess cardiac health and lifespan in 2 cardiomyocyte-specific transgenic mouse models with enhanced versus reduced IGF1 receptor (IGF1R) signaling. Male mice with human IGF1R overexpression or dominant negative phosphoinositide 3-kinase mutation were examined at different life stages by echocardiography, invasive hemodynamics, and treadmill coupled to indirect calorimetry. In vitro assays included cardiac histology, mitochondrial respiration, ATP synthesis, autophagic flux, and targeted metabolome profiling, and immunoblots of key IGF1R downstream targets in mouse and human explanted failing and nonfailing hearts, as well.
Results: Young mice with increased IGF1R signaling exhibited superior cardiac function that progressively declined with aging in an accelerated fashion compared with wild-type animals, resulting in heart failure and a reduced lifespan. In contrast, mice with low cardiac IGF1R signaling exhibited inferior cardiac function early in life, but superior cardiac performance during aging, and increased maximum lifespan, as well. Mechanistically, the late-life detrimental effects of IGF1R activation correlated with suppressed autophagic flux and impaired oxidative phosphorylation in the heart. Low IGF1R activity consistently improved myocardial bioenergetics and function of the aging heart in an autophagy-dependent manner. In humans, failing hearts, but not those with compensated hypertrophy, displayed exaggerated IGF1R expression and signaling activity.
Conclusions: Our findings indicate that the relationship between IGF1R signaling and cardiac health is not linear, but rather biphasic. Hence, pharmacological inhibitors of the IGF1 pathway, albeit unsuitable for young individuals, might be worth considering in older adults. Ključne besede: aging, autophagy, cardiomyopathies, insulin-like growth factor 1, mitochondria, mouse, phosphatidylinositol 3-kinases Objavljeno v DKUM: 11.08.2023; Ogledov: 495; Prenosov: 47 Celotno besedilo (3,06 MB) Gradivo ima več datotek! Več... |
8. Skeletal muscle uncoupling proteins in mice models of obesityLidija Križančić Bombek, Maša Čater, 2022, pregledni znanstveni članek Opis: Obesity and accompanying type 2 diabetes are among major and increasing worldwide problems that occur fundamentally due to excessive energy intake during its expenditure. Endotherms continuously consume a certain amount of energy to maintain core body temperature via thermogenic processes, mainly in brown adipose tissue and skeletal muscle. Skeletal muscle glucose utilization and heat production are significant and directly linked to body glucose homeostasis at rest, and especially during physical activity. However, this glucose balance is impaired in diabetic and obese states in humans and mice, and manifests as glucose resistance and altered muscle cell metabolism. Uncoupling proteins have a significant role in converting electrochemical energy into thermal energy without ATP generation. Different homologs of uncoupling proteins were identified, and their roles were linked to antioxidative activity and boosting glucose and lipid metabolism. From this perspective, uncoupling proteins were studied in correlation to the pathogenesis of diabetes and obesity and their possible treatments. Mice were extensively used as model organisms to study the physiology and pathophysiology of energy homeostasis. However, we should be aware of interstrain differences in mice models of obesity regarding thermogenesis and insulin resistance in skeletal muscles. Therefore, in this review, we gathered up-to-date knowledge on skeletal muscle uncoupling proteins and their effect on insulin sensitivity in mouse models of obesity and diabetes. Ključne besede: uncoupling protein, skeletal muscle, insulin, diabetes, obesity Objavljeno v DKUM: 10.08.2023; Ogledov: 439; Prenosov: 33 Celotno besedilo (1,36 MB) Gradivo ima več datotek! Več... |
9. Spermidine overrides INSR (insulin receptor)-IGF1R (insulin-like growth factor 1 receptor)-mediated inhibition of autophagy in the aging heartMahmoud Abdellatif, Frank Madeo, Guido Kroemer, Simon Sedej, 2022, drugi znanstveni članki Opis: Although attenuated IGF1R (insulin-like growth factor 1 receptor) signaling has long been viewed to promote longevity in model organisms, adverse effects on the heart have been the subject of major concern. We observed that IGF1R is overexpressed in cardiac tissues from patients with end-stage non-ischemic heart failure, coupled to the activation of the IGF1R downstream effector AKT/protein kinase B and inhibition of ULK1 (unc-51 like autophagy activating kinase 1). Transgenic overexpression of human IGF1R in cardiomyocytes from mice initially induces physiological cardiac hypertrophy and superior function, but later in life confers a negative impact on cardiac health, causing macroautophagy/autophagy inhibition as well as impaired oxidative phosphorylation, thus reducing life expectancy. Treatment with the autophagy inducer and caloric restriction mimetic spermidine ameliorates most of these IGF1R-induced cardiotoxic effects in vivo. Moreover, inhibition of IGF1R signaling by means of a dominant-negative phosphoinositide 3-kinase (PI3K) mutant induces cardioprotective autophagy, restores myocardial bioenergetics and improves late-life survival. Hence, our results demonstrate that IGF1R exerts a dual biphasic impact on cardiac health, and that autophagy mediates the late-life geroprotective effects of IGF1R inhibition in the heart. Ključne besede: heart failure, IGF1R, PI3K, human, insulin signaling, longevity, mitochondrial dysfunction, mouse Objavljeno v DKUM: 08.08.2023; Ogledov: 335; Prenosov: 40 Celotno besedilo (619,72 KB) Gradivo ima več datotek! Več... |
10. SNAP-25b-deficiency increases insulin secretion and changes spatiotemporal profile of $Ca^{2+}$ oscillations in $\beta$ cell networksTeresa Daraio, Lidija Križančić Bombek, Marko Gosak, Ismael Valladolid-Acebes, Maša Skelin, Essam Refai, Per-Olof Berggren, Kerstin Brismar, Marjan Rupnik, Christina Bark, 2017, izvirni znanstveni članek Opis: SNAP-25 is a protein of the core SNARE complex mediating stimulus-dependent release of insulin from pancreatic $\beta$ cells. The protein exists as two alternatively spliced isoforms, SNAP-25a and SNAP-25b, differing in 9 out of 206 amino acids, yet their specific roles in pancreatic $\beta$ cells remain unclear. We explored the effect of SNAP-25b-deficiency on glucose-stimulated insulin release in islets and found increased secretion both in vivo and in vitro. However, slow photo-release of caged $Ca^{2+}$ in $\beta$ cells within pancreatic slices showed no significant differences in $Ca^{2+}$-sensitivity, amplitude or rate of exocytosis between SNAP-25b-deficient and wild-type littermates. Therefore, we next investigated if $Ca^{2+}$ handling was affected in glucose-stimulated [beta] cells using intracellular $Ca^{2+}$-imaging and found premature activation and delayed termination of [$Ca^{2+}$] i elevations. These findings were accompanied by less synchronized $Ca^{2+}$-oscillations and hence more segregated functional $\beta$ cell networks in SNAP-25b-deficient mice. Islet gross morphology and architecture were maintained in mutant mice, although sex specific compensatory changes were observed. Thus, our study proposes that SNAP-25b in pancreatic [beta] cells, except for participating in the core SNARE complex, is necessary for accurate regulation of $Ca^{2+}$-dynamics. Ključne besede: insulin secretion, pre-diabetes Objavljeno v DKUM: 23.08.2017; Ogledov: 1504; Prenosov: 218 Celotno besedilo (3,80 MB) Gradivo ima več datotek! Več... |