1. Zagreb root-indices of graphs with chemical applicationsNiko Tratnik, Petra Žigert Pleteršek, 2024, izvirni znanstveni članek Opis: Root-indices of graphs are mathematical tools that help us to understand complex systems, like molecules and networks, by capturing key structural information. In this study, we introduce two new root-indices, the first and the second Zagreb root-index, and we analyze their properties. We apply these indices to chemical structures like benzenoid molecules and octane isomers, showing that they sometimes provide better insights than traditional indices. We also compare the effectiveness of several root-indices with their standard versions, highlighting their ability to distinguish between different graph structures. Ključne besede: first Zagreb index, second Zagreb index, root-indices, octane isomers, discrimination power Objavljeno v DKUM: 19.12.2024; Ogledov: 0; Prenosov: 5
Celotno besedilo (322,83 KB) Gradivo ima več datotek! Več... |
2. Quantifying power system frequency quality and extracting typical patterns within short time scales below one hourYounes Mohammadi, Boštjan Polajžer, Roberto Chouhy Leborgne, Davood Khodadad, 2024, izvirni znanstveni članek Ključne besede: quantifying power system frequency quality, statistical indices, pattern extracting, machine learning, short time scales, renewable energy sources Objavljeno v DKUM: 23.08.2024; Ogledov: 50; Prenosov: 10
Celotno besedilo (12,67 MB) |
3. Generalized cut method for computing Szeged-like polynomials with applications to polyphenyls and carbon nanoconesSimon Brezovnik, Niko Tratnik, 2023, izvirni znanstveni članek Opis: Szeged, Padmakar-Ivan (PI), and Mostar indices are some of the most investigated distance-based Szeged-like topological indices. On the other hand, the polynomials related to these topological indices were also introduced, for example the Szeged polynomial, the edge- Szeged polynomial, the PI polynomial, the Mostar polynomial, etc. In this paper, we introduce a concept of the general Szeged-like polynomial for a connected strength-weighted graph. It turns out that this concept includes all the above mentioned polynomials and also infinitely many other graph polynomials. As the main result of the paper, we prove a cut method which enables us to efficiently calculate a Szeged-like polynomial by using the corresponding polynomials of strength-weighted quotient graphs obtained by a partition of the edge set that is coarser than ▫$\Theta^*$▫-partition. To the best of our knowledge, this represents the first implementation of the famous cut method to graph polynomials. Finally, we show how the deduced cut method can be applied to calculate some Szeged-like polynomials and corresponding topological indices of para-polyphenyl chains and carbon nanocones. Ključne besede: graph theory, carbon nanocone, topological indices Objavljeno v DKUM: 25.03.2024; Ogledov: 234; Prenosov: 4
Povezava na celotno besedilo |
4. Gutman, Ivan; Miljković, Olga: Molecules with smallest connectivity indices. - Match No. 41 (2000), 57-70Sandi Klavžar, 2001, recenzija, prikaz knjige, kritika Ključne besede: matematika, kemijska teorija grafov, molekularni grafi, indeksi povezanosti, mathematics, chemical graph theory, molecular graphs, connectivity indices Objavljeno v DKUM: 10.07.2015; Ogledov: 1614; Prenosov: 38
Povezava na celotno besedilo |
5. Jäntschi, Lorentz; Katona, Gabriel; Diudwe, Mircea V.: Modeling molecular properties by Cluj indices. - Match No. 41 (2000), 151-188Sandi Klavžar, 2001, recenzija, prikaz knjige, kritika Ključne besede: matematika, kemijska teorija grafov, molekularni grafi, indeksi, mathematics, chemical graph theory, molecular graphs, indices Objavljeno v DKUM: 10.07.2015; Ogledov: 1157; Prenosov: 42
Povezava na celotno besedilo |
6. |