Opis: Namen magistrskega dela je preizkusiti, kako vpliva uglaševanje hiperparametrov nevronskih mrež na njihovo natančnost in ali je možno doseči izboljšavo s spreminjanjem privzetih hiperparametrov. V teoretičnem delu smo pripravili uvod v nevronske mreže in se poglobili v dobre tehnike učenja. Predstavili smo algoritem diferencialne evolucije in metodo roja delcev, s katerima smo si pomagali pri optimizaciji. V praktičnem delu smo z modelom ResNet reševali problem razvrščanja slik v razrede pri podatkovni zbirki ptic. Analizirali smo različne iskalne konfiguracije hiperparametrov in ovrednotili njihove natančnosti. Na koncu smo ovrednotili hipoteze in podali ideje za nadaljnje delo.Ključne besede: nevronske mreže, hiperparametri, evolucijski algoritmiObjavljeno v DKUM: 14.10.2024; Ogledov: 0; Prenosov: 34 Celotno besedilo (3,45 MB)