| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 2 / 2
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Pressure stability of lipases and their use in different systems
Maja Leitgeb, Željko Knez, 2001, izvirni znanstveni članek

Opis: For the investigation of the solvent impact on the enzymes, lipases from different sources (Pseudomonas fluorescences, Rhizopus javanicus, Rhizopus niveus, Candida rugose and Porcine pancreas) were used. Stability and activity of these lipases in aqueous medium in supercritical $CO_2$ and liquid propane at 100 bar and 40°C were studied. On the basis of previous results lipases were used for their application in two different systems. The application of the polysulphone membrane in the continuous stirred tank membrane reactor was studied on the model system of the hydrolysis of oleyl oleate in propane at high pressure. As a catalyst the Candida rugosa lipase was used. The next utilization of lipases was the use of on silica arerogel self-immobilized lipase from Porcine pancreas as catalyst for esterification reaction in near-critical propane at 40°C and 100 bar.
Ključne besede: chemical processing, supercritical fluids, lipases, enzyme stability, high pressure membrane reactor
Objavljeno v DKUM: 10.07.2015; Ogledov: 1541; Prenosov: 196
.pdf Celotno besedilo (608,04 KB)
Gradivo ima več datotek! Več...

2.
Enzyme-catalyzed reactions in different types of high-pressure enzymatic reactors
Mateja Primožič, Maja Leitgeb, Muzafera Paljevac, Željko Knez, 2006, izvirni znanstveni članek

Opis: The enzyme-catalyzed hydrolysis of carboxy-methyl cellulose (CMC) was performed in three different types of reactors; in a batch stirred-tank reactor (BSTR) operating at atmospheric pressure, in a high-pressure batch stirred-tank reactor (HP BSTR) and in a high-pressure continuous tubular-membrane reactor (HP CTMR). In the high-pressure reactors aqueous SC C02 was used as the reaction medium. The aim of our research was optimization of the reaction parameters for reaction performance. All the reactions were catalyzed by cellulase from Humicola insolens. Glucose production in the high-pressure batch stirred-tank reactor was faster than in the BSTR at atmospheric pressure. The optimal temperature for the reaction performed in the BSTR at atmospheric pressure was 30°C, while the optimal temperature for the reaction performed in SC C02 was 32°C. The influence of the application of tubular ceramic membranes in the high-pressure reaction system was studied on the model reaction of CMC hydrolysis at atmospheric pressure and in SC C02. The reaction was catalyzed by cellulase from Humicola insolens covalently linked to the surface of the ceramic membrane. The hydrolysis of CMC in SC C02 and at atmospheric pressure was performed for a long time period. The reaction carried out in SC C02 was more productive than the reaction performed at atmospheric pressure.
Ključne besede: chemical processing, enzymatic reaction, cellulase, supercritical carbon dioxide, high-pressure batch reactor, high-pressure membrane reactor
Objavljeno v DKUM: 31.05.2012; Ogledov: 2164; Prenosov: 338
.pdf Celotno besedilo (454,51 KB)
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.07 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici