| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 4 / 4
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Priprava poroznih biomaterialov : diplomsko delo univerzitetnega študijskega programa I. stopnje
Laura Gruškovnjak, 2020, diplomsko delo

Opis: Tkivo v človeškem telesu se lahko zaradi različnih poškodb, nesreč ali bolezni poškoduje, zato se vsak dan opravi veliko število operacijskih posegov s katerimi se to tkivo popravi oziroma nadomesti. Do nedavnega je večina teh posegov obsegala presaditev tkiv ali celotnih organov, v zadnjem desetletju pa se vse več uporabljajo biološki nadomestki, imenovani biomateriali oziroma celična ogrodja. Njihova prednost je v tem, da so biorazgradljivi, torej se po dokončani funkciji v telesu sami razgradijo in ni potrebno ponovno posegati v pacientovo telo. Prav tako pa se za celična ogrodja zahteva visoka poroznost in povezanost por s katerimi se spodbudi rast novih tkiv. Pri regeneraciji kostnega tkiva se največkrat kot biomateriali uporabljajo polisaharidi, ki imajo vrsto koristnih lastnosti predvsem biokompatibilnost in bioaktivnost. V okviru diplomske naloge smo s postopkom sušenja z zamrzovanjem pripravili različne biomateriale. Kot polisaharide smo uporabili natrijev alginat, hitozan, guar, ksantan, dekstran in karboksimetil hitozan. Uspešno sintetiziranim biomaterialom smo določili poroznost in proučili nabrekanje v fosfatnem pufru. S pomočjo elektronskega vrstičnega mikroskopa smo posneli pore v notranjosti materiala in s pomočjo FTIR analize dokazali vsebnost vseh komponent v končnem celičnem ogrodju. Kontaktne kote biomaterialov smo izračunali s pomočjo računalniškega programa Image J. S tem smo dobili podatek o hidrofobnosti oziroma hidrofilnosti biomateriala. Prav tako smo biomaterialom dodali naravno komponento, ki se nahaja v človeških kosteh, hidroksiapatit, in preučili njegov vpliv na lastnosti prvotnih celičnih ogrodij. Ker pa je zrela kost sestavljena iz dveh tkiv, mehkejše in trdnejše, smo s pomočjo superkritičnega ogljikovega dioksida pripravili biomaterial iz sintetičnega biorazgradljivega poliestra polikaprolaktona. To ogrodje je zaradi drugačne priprave trdnejše, a manj porozno. Skupaj z mehkejšim ogrodjem pripravljenim z liofilizacijo, ki je posledično zaradi namakanja v kalcijevem kloridu bolj porozno, tvorita večslojni biomaterial za aplikacije kostnega inženiringa.
Ključne besede: polisaharidi, polikaprolakton, porozni biomateriali, hidroksiapatit, liofilizacija, superkritični ogljikov dioksid
Objavljeno v DKUM: 08.10.2020; Ogledov: 1239; Prenosov: 160
.pdf Celotno besedilo (4,09 MB)

2.
Študij postopka elektropredenja karboksimetilceluloznih vlaken z nano-hidroksiapatitom
Petra Gašparič, 2013, magistrsko delo

Opis: V razvitem svetu je tkivni inženiring vedno bolj pomembno področje, saj se zaradi boljšanja življenjskega standarda in razvoja v zdravstvu prebivalstvo stara. Za izdelavo kostnih implantatov materiali potrebujejo posebne lastnosti, ki jih je mogoče doseči le s kreiranjem novih materialov z uporabo različnih tehnologij. Ena izmed možnosti je uporaba nanotehnologije, s katero lahko izdelamo nanokompozitna vlakna. Ena od možnih uporab so biorazgradljivi polimeri, kot je karboksimetil celuloza, in delci hidroksiapatita, ki spada med kalcijeve fosfate in je najboljši sintetiziran približek naravnim trdim tkivom v človeškem telesu. V nalogi smo se osredotočili na študij elektropredenja karboksimetilceluloznih nanovlaken z vključenimi delci nano-hidroksiapatita za uporabo na področju tkivnega inženiringa. Sintetizirali smo nanodelce hidroksiapatita po obarjalni metodi in jih okarakterizirali. S postopkom elektropredenja smo izdelali karboksimetilcelulozna nanovlakna. Pri tem smo optimizirali postopek elektropredenja s stališča uporabljene predilne raztopine, parametrov predenja in okoljskih parametrov na podlagi analize z vrstično elektronsko mikroskopijo (SEM). Ugotovili smo, da je najprimernejša predilna raztopina iz kombinacije raztopine natrijeve soli karboksimetil celuloze (NaCMC) s koncentracijo 7 ut. % in raztopine poli(etilen oksida) (PEO) s koncentracijo 5 ut. % v razmerju R (NaCMC : PEO) = 50 : 50. Optimalni parametri elektropredenja so električna napetost 65 kV in razdalja med elektrodama 150 mm. Relativna zračna vlažnost v prostoru ne sme presegati 50 %. V optimalno raztopino smo dodali različne koncentracije delcev nano-hidroksiapatita (nHAp) in izpredli nanokompozitna vlakna pri optimalnih pogojih elektropredenja. Na podlagi SEM analize delcev in analize z dinamičnim sipanjem svetlobe (DLS) smo pokazali, da imajo delci široko porazdelitev velikosti. Prisotni so nanodelci ter številni aglomerati delcev velikosti nekaj μm. Izvedli smo termogravimetrično analizo (TGA) nanokompozitnih vlaken in ugotovili, da odstotek anorganskega ostanka po segrevanju narašča proporcionalno z večanjem koncentracije dodanih delcev nano-hidroksiapatita, s čimer smo potrdili prisotnost delcev v vlaknih. Pripravili smo elektropredena karboksimetilcelulozna nanokompozitna vlakna z vključenimi delci nano-hidroksiapatita.
Ključne besede: elektropredenje, nanovlakna, hidroksiapatit, karboksimetil celuloza, tkivni inženiring
Objavljeno v DKUM: 03.09.2013; Ogledov: 2544; Prenosov: 259
.pdf Celotno besedilo (9,48 MB)

3.
Študij postopka nanomodifikacije aktiviranih celuloznih vlaken
Adrijana Šegula, 2012, magistrsko delo

Opis: Vsako leto več milijonov ljudi trpi zaradi bolezni kosti, kot posledic travme, tumorja, zloma, ali napake. Kot alternativni pristop za zdravljenje poškodovanega kostnega tkiva se uporabljajo porozna ogrodja, ki vplivajo na pospešeno formiranje kosti iz okoljskega tkiva. Tako ogrodja imajo veliko prednost pred avtografti in alografti. V sedanjm času se veliko nanomaterialov uporablja v biomedicinskih raziskavah za različne namene. Zanimiva uporaba je posnemanje naravnega tkiva in priprava primarnega ekstracelularnega okolja za rast in razvoj celic znotraj biomimetičnega materiala. Hidroksiapatit je glavna anorganska sestavina kostnega tkiva in zato je primeren za pripravo kostnih nadomestnih tkiv, vendar potrebuje primerno ogrodje. Celuloza je široko uporaben in lahko dostopen polisaharid, ki se pogosto uporablja tudi na področju medicinskih tekstilij. Biokompatibilnost celuloze je dobro raziskana, njene mehanske lastnosti se dobro ujemajo z lastnostmi trdega in mehkega kostnega tkiva. V okviru magistrske naloge smo pripravili biokompatibilen nanokompozit, tako da smo plast delcev hidroksiapatita oblikovali na tekstilni površini, ki mora prav tako zadovoljiti posebnim zahtevam medicinskih tekstilij. Uporabili smo regenerirana celulozna vlakna v obliki netkane tekstilije, ki smo jo pred postopkom nanomodifikacije še ustrezno predobdelali z namenom, da z aktivacijo vlaken zagotovimo pogoje za oblikovanje homogenih plasti delcev na površini vlaken. Vlakna smo alkalno in plazemsko predobdelali in proučili vpliv predobdelave na postopek oblikovanja nanoprevlek na vlaknih. Ugotovili smo, da je aktivacija s plazmo dobra in ekološko prijazna alternativa predobdelavi z NaOH. Razporeditev in velikost delcev nanohidroksiapatita (nHA) na vlaknih, ki so bila predobdelana s plazmo je boljše v primerjavi z vlakni, ki so bila predobdelana z NaOH. Slaba lastnost je, da postopek vpliva na mehanske lastnosti materiala.
Ključne besede: Kostni tkivni inženiring, celuloza, hidroksiapatit, biokompatibilnost, plazma, NaOH
Objavljeno v DKUM: 19.09.2012; Ogledov: 2489; Prenosov: 345
.pdf Celotno besedilo (3,16 MB)

4.
PROCESIRANJE POLIMEROV Z UPORABO SUPERKRITIČNIH FLUIDOV
Elena Aionicesei, 2009, doktorska disertacija

Opis: Tradicionalne metode za procesiranje polimerov uporabljajo nevarna hlapna organska topila in kloro-floro-ogljikovodike. Zaradi povečanih izpustov nevarnih topil se pojavlja potreba po uporabi čistejših metod za procesiranje polimerov. Eno možnost predstavlja superkritični ogljikov dioksid (scCO2) kot mehčalo pri procesiranju polimerov. Velika uporabnost superkritičnih fluidov se kaže pri procesiranju polimerov za potrebe biomedicinskih pripomočkov (kot so mikrodelci, mikrokapsule, pene, membrane, kompoziti). Prednosti metode so predvsem v odsotnosti nevarnih organskih topil, učinkoviti ekstrakciji topil in nečistoč, procesnih pogojih, nižji temperaturi, nadzorovanemu oblikovanju delcev in pen z enostavnim reguliranjem tlaka in temperature. Navkljub velikemu potencialu scCO2 kot “zelenemu” topilu za procesiranje biokompatibilnih in biorazgradljivih polimerov, je podaktov o faznih ravnotežjih, ki so potrebni za načrtovanje postopka, dokaj malo. Nadaljnje raziskave so potrebne za optimiranje procesnih tehnik in parametrov (tlak, temperatura). Podatkov o uporabi scCO2 za procesiranje kompozitov polimer/keramika za biomedicinske aplikacije je še posebej malo na razpologo. Cilj te disertacije je uporaba scCO2 kot “zelenega” topila za procesiranje biorazgradljivih polimerov in kompozitov, ki se uporabljajo kot biomateriali. V raziskavah smo uporabili dva biorazgradljiva polimera, poli(L-laktid) (PLLA) in poli(D,L-laktid-ko-glikolid) (PLGA). Raziskali smo tudi kompozite polimerov z bioaktivnim keramičnim prahom, hidroksiapatitom (HA). Glavni cilj raziskav je bil pridobiti porozen polimer ali kompozit, primeren za tkivni inženiring, pri nizki temperaturi in brez uporabe dodatnih organskih topil. Študirali in razložili smo obnašanje obeh polimerov v zmesi s CO2. Z določitvijo topnosti in difuzijskega koeficienta CO2 v polimerih pri določeni temperaturi in tlaku, smo pridobili več podatkov o faznem ravnotežju polimer-plin, ki so pomembni za razumevanje vpliva in optimiranje procesnih parametrov. Topnost CO2 v polimerih smo izmerili pri treh različnih temperaturah (308, 313 in 323 K) in v območju tlaka 10 – 30 MPa. Izbrane temperature so bile višje od kritične temperature za CO2, vendar še vedno dovolj nizke, da ne bi vplivale na bioaktivnost spojin ali proteinov dodanih v sistem med procesiranjem. Pri testiranju poimerov in kompozitnih materialov smo uporabili enako temperaturno in tlačno območje. Raziskali smo učinkovitost mešanja v prisotnosti scCO2 za pridobivanje kompozitnega materiala iz PLLA in HA ter PLGA in HA in postopek primerjali s postopkom koprecipitacijie. Nadalje smo določili topnost in difuzijski koeficient CO2 v kompozitnih materialih ter jih primerjali z rezultati pridobljenimi za čiste polimere. Tako smo lahko določili vpliv keramičnega polnila na absorpcijo plina. Ocenili smo možnosti pridobivanja poroznih struktur z uporabo visokotlačne tehnike s CO2 kot vpihovalnim medijem brez oziroma z dodanim porogenom. Raziskali smo vpliv tlaka, temperature, ekspanzijske hitrosti in prisotnost porogena na končno porozno strukturo. Eksperimentalne rezultate smo primerjali s podatki iz literature in z rezultati dobljenimi z matematičnim modeliranjem. Rezultati kažejo, da postopek plinskega penjenja biorazgradljivih polimerov predstavlja obetavno tehniko pridobivanja opornih tkiv z željeno strukturo. V prihodnjih raziskovah bodo potrebne nadaljnje študije in optimiranje procesnih parametrov glede na naravo substrata in željen končni produkt.
Ključne besede: Polimerni biomateriali, procesiranje superkritičnih fluidov, poli(L-laktid), poli(D, L-laktid-ko-glikolid), hidroksiapatit, kompozitni materiali, topnost, difuzivnost, Sanchez-Lacombe EOS, PC SAFT, plinsko penjenje.
Objavljeno v DKUM: 07.05.2009; Ogledov: 5076; Prenosov: 467
.pdf Celotno besedilo (14,32 MB)

Iskanje izvedeno v 0.1 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici