| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju


1 - 2 / 2
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
Load transfer and stress in a piled gravity retaining wall
Qun Chen, Li Wan, Changrong He, Zihui Lai, 2010, izvirni znanstveni članek

Opis: The piled retaining wall is a new type of railway retaining structure in China. In the current design, the retaining wall, the beam and the piles are assumed to be independent components. Both the mutual action of the retaining wall, the piles and beam, and the influence of the soil or rock foundation on the structure are not fully considered, so that there are some limitations in the current design method. In this paper, using field observations and a three-dimensional finite-element analysis, the lateral earth pressure on the wall back, the stress distributions and the forces of the reinforcements in the beam and the pile were studied. The simulation results were in good agreement with the field observation data. These results revealed that the tensile stresses were very small and that these stresses were positive in most zones in the beam and the pile. It can also be observed that the tensile stresses or forces in the beam and pile obtained in this study were much smaller than those obtained using the current design method. This clarified the fact that the current design method used for the beam and the pile was very conservative and that it should be optimized to consider the effect of the foundation on the whole structure and the interactions among the different components.
Ključne besede: piled gravity retaining wall, field observation, finite-element analysis, stress, load transfer mechanism
Objavljeno: 11.06.2018; Ogledov: 109; Prenosov: 16
.pdf Celotno besedilo (558,92 KB)
Gradivo ima več datotek! Več...

Design optimization for symmetrical gravity retaining walls
Erol Sadoğlu, 2014, izvirni znanstveni članek

Opis: The optimization for symmetrical gravity retaining walls of different heights is examined in this study. For this purpose, an optimization problem of continuous functions is developed. The continuous functions are the objective function defined as the cross-sectional area of the wall and the constraint functions derived from external stability and internal stability verifications. The verifications are listed as the overturning, the forward sliding, the bearing capacity, the shears in the stem and the bendings in the stem. The heights of the walls are selected as 2.0, 3.0, and 4.0 m in order to investigate the outline of the optimum cross-section and the effect of the wall height on the outline. Additionally, the physical and mechanical properties of the soil are kept constant in order to compare only the effect of the height on the geometry. The upper and lower bounds of the solution space are specified to be as wide as possible and the minimum dimensions suggested for the gravity retaining walls are not taken into account. A common feature of the optimum cross-sections of walls with different heights is to have a very wide lower part like a wall foundation and a slender stem. However, other than the forward sliding constraint, the bending constraints are active at the optimum values of the variables.
Ključne besede: gravity retaining wall, nonlinear optimization, continuous variables, interior point method
Objavljeno: 14.06.2018; Ogledov: 164; Prenosov: 24
.pdf Celotno besedilo (168,77 KB)
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.07 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici