1. Span of a graph : keeping the safety distanceIztok Banič, Andrej Taranenko, 2023, izvirni znanstveni članek Opis: Inspired by Lelek's idea from [Disjoint mappings and the span of spaces, Fund. Math. 55 (1964), 199 -- 214], we introduce the novel notion of the span of graphs. Using this, we solve the problem of determining the \emph{maximal safety distance} two players can keep at all times while traversing a graph. Moreover, their moves must be made with respect to certain move rules. For this purpose, we introduce different variants of a span of a given connected graph. All the variants model the maximum safety distance kept by two players in a graph traversal, where the players may only move with accordance to a specific set of rules, and their goal: visit either all vertices, or all edges. For each variant, we show that the solution can be obtained by considering only connected subgraphs of a graph product and the projections to the factors. We characterise graphs in which it is impossible to keep a positive safety distance at all moments in time. Finally, we present a polynomial time algorithm that determines the chosen span variant of a given graph. Ključne besede: strong span of a graph, direct span of a graph, Cartesian span of a graph, safety distance Objavljeno v DKUM: 07.06.2024; Ogledov: 87; Prenosov: 6 Celotno besedilo (213,47 KB) Gradivo ima več datotek! Več... |
2. Distance-based Invariants and Measures in GraphsAleksander Kelenc, 2019, doktorska disertacija Opis: This doctoral dissertation is concerned with aspects on distance related topics in graphs. We study three main topics, namely a recently introduced measure called the Hausdorff distance of graphs and two new graph invariants - the edge metric dimension and the mixed metric dimension of graphs. All three topics are part of the metric graph theory since they are tightly connected with the basic concept of distance between two vertices of a graph.
The Hausdorff distance is a relatively new measure of the similarity of graphs.
The notion of the Hausdorff distance considers a special kind of common subgraph of the compared graphs and depends on the structural properties outside of the common subgraph. We study the Hausdorff distance between certain families of graphs that often appear in chemical graph theory. Next to a few results for general graphs, we determine formulae for the distance between paths and cycles.
Previously, there was no known efficient algorithm for the problem of determining the Hausdorff distance between two trees, and in this dissertation we present a polynomial-time algorithm for it. The algorithm is recursive and it utilizes the divide and conquer technique. As a subtask it also uses a procedure that is based on the well-known graph algorithm for finding a maximum bipartite matching.
The edge metric dimension is a graph invariant that deals with distinguishing the edges of a graph. Let $G=(V(G),E(G))$ be a connected graph, let $w \in V(G)$ be a vertex, and let $e=uv \in E(G)$ be an edge. The distance between the vertex $w$ and the edge $e$ is given by $d_G(e,w)=\min\{d_G(u,w),d_G(v,w)\}$. A vertex $w \in V(G)$ distinguishes two edges $e_1,e_2 \in E(G)$ if $d_G(w,e_1) \ne d_G(w,e_2)$. A set $S$ of vertices in a connected graph $G$ is an edge metric generator of $G$ if every two distinct edges of $G$ are distinguished by some vertex of $S$. The smallest cardinality of an edge metric generator of $G$ is called the edge metric dimension and is denoted by $dim_e(G)$. The concept of the edge metric dimension is new. We study its mathematical properties. We make a comparison between the edge metric dimension and the standard metric dimension of graphs while presenting some realization results concerning the two. We prove that computing the edge metric dimension of connected graphs is NP-hard and give some approximation results. Moreover, we present bounds and closed formulae for the edge metric dimension of several classes of graphs.
The mixed metric dimension is a graph invariant similar to the edge metric dimension that deals with distinguishing the elements (vertices and edges) of a graph. A vertex $w \in V(G)$ distinguishes two elements of a graph $x,y \in E(G)\cup V(G)$ if $d_G(w,x) \ne d_G(w,y)$. A set $S$ of vertices in a connected graph $G$ is a mixed metric generator of $G$ if every two elements $x,y \in E(G) \cup V(G)$ of $G$, where $x \neq y$, are distinguished by some vertex of $S$. The smallest cardinality of a mixed metric generator of $G$ is called the mixed metric dimension and is denoted by $dim_m(G)$. In this dissertation, we consider the structure of mixed metric generators and characterize graphs for which the mixed metric dimension equals the trivial lower and upper bounds. We also give results on the mixed metric dimension of certain families of graphs and present an upper bound with respect to the girth of a graph. Finally, we prove that the problem of determining the mixed metric dimension of a graph is NP-hard in the general case. Ključne besede: Hausdorff distance, distance between graphs, graph algorithms, trees, graph similarity, edge metric dimension, edge metric generator, mixed metric dimension, metric dimension Objavljeno v DKUM: 03.08.2020; Ogledov: 1584; Prenosov: 120 Celotno besedilo (800,48 KB) |
3. Wiener numbers of pericondensed benzenoid hydrocarbonsSandi Klavžar, Ivan Gutman, Amal Rajapakse, 1997, izvirni znanstveni članek Opis: Using a recently developed technique for the calculation of the Wiener number (W) of benzenoid systems, we determine explicit expressions for W for several homologous series of pericondensed benzenoid hydrocarbons. An elementary proof for the correctness of the used method is also included. Ključne besede: mathematics, chemical graph theory, distance in graphs, Wiener number, benzenoids Objavljeno v DKUM: 05.07.2017; Ogledov: 1440; Prenosov: 168 Celotno besedilo (16,93 MB) Gradivo ima več datotek! Več... |
4. Corroborating a modification of the Wiener indexIvan Gutman, Janez Žerovnik, 2002, drugi znanstveni članki Opis: In a recent work [Chem. Phys. Lett. 333 (2001) 319-321] Nikolić, Trinajstić, and Randie put forward a novel modification ▫$^m$▫W of the Wiener index. We now show that ▫$^m$▫W possesses the basic properties required by a topological index to be acceptable as a measure of the extent of branching of the carbon-atom skeleton of the respective molecule (and therefore to be a structure-descriptor, potentially applicable in QSPR and QSAR studies). In particular, if ▫$T_n$▫ is any n-vertex tree, different from the n-vertex path ▫$P_n$▫ and the n-vertex star ▫$S_n$▫, then mw(Pn) < mW(Tn) < mW(Sn). We also show how the concept of the modified Wiener index can be extended to weighted molecular graphs. Ključne besede: graph theory, distance, molecular graphs, modified Wiener index, weigted modified Wiener index, branching, chemical graph theory Objavljeno v DKUM: 05.07.2017; Ogledov: 1141; Prenosov: 84 Celotno besedilo (85,05 KB) Gradivo ima več datotek! Več... |
5. On acyclic colorings of direct productsSimon Špacapan, Aleksandra Tepeh, 2008, izvirni znanstveni članek Opis: A coloring of a graph ▫$G$▫ is an acyclic coloring if the union of any two color classes induces a forest. It is proved that the acyclic chromatic number of direct product of two trees ▫$T_1$▫ and ▫$T_2$▫ equals ▫$\min\{ \Delta(T_1) + 1, \Delta(T_2) + 1\}$▫. We also prove that the acyclic chromatic number of direct product of two complete graphs ▫$K_m$▫ and ▫$K_n$▫ is ▫$mn-m-2$▫, where ▫$m \ge n \ge 4$▫. Several bounds for the acyclic chromatic number of direct products are given and in connection to this some questions are raised. Ključne besede: mathematics, graph theory, coloring, acyclic coloring, distance-two coloring, direct product Objavljeno v DKUM: 31.03.2017; Ogledov: 898; Prenosov: 122 Celotno besedilo (142,13 KB) Gradivo ima več datotek! Več... |
6. A forbidden subgraph characterization of some graph classes using betweenness axiomsManoj Changat, Anandavally K. Lakshmikuttyamma, Joseph Mathews, Iztok Peterin, Prasanth G. Narasimha-Shenoi, Geetha Seethakuttyamma, Simon Špacapan, 2013, izvirni znanstveni članek Opis: Naj bo ▫$I_G(x,y)$▫ interval najkrajših ▫$x,y$▫-poti in ▫$J_G(x,y)$▫ interval induciranih ▫$x,y$▫-poti v povezanem grafu ▫$G$▫. Obravnavani so naslednji trije aksiomi vmesnosti za množico ▫$V$▫ in ▫$R: V times V rightarrow 2^V$▫: (i) ▫$x in R(u,y), y in R(x,v), x neq y, |R(u,v)|>2 Rightarrow x in R(u,v)$▫; (ii) ▫$x in R(u,v) Rightarrow R(u,x) cap R(x,v) = {x}$▫; (iii) ▫$x in R(u,y), y in R(x,v), x neq y, Rightarrow x in R(u,v)$▫. Karakteriziramo razred grafov, za katere ▫$I_G$▫ izpolnjuje (i), razred grafov, za katere ▫$J_G$▫ izpolnjuje (ii) in razred grafov, kjer oba ▫$I_G$▫ in ▫$J_G$▫ izpolnjujeta (iii). Karakterizacije so podane z prepovedanimi induciranimi podgrafi. Izkaže se, da je razred grafov, kjer ▫$I_G$▫ izpolnjuje (i), pravi podrazred razdaljno dednih grafov in da je razred, kjer ▫$J_G$▫ izpolnjuje (ii), pravi nadrazred razdaljno dednih grafov. Podani sta tudi aksiomatični karakterizaciji tetivnih in ptolomejskih grafov. Ključne besede: matematika, teorija grafov, prepovedani podgrafi, inducirana pot, intervalna funkcija, aksiomi vmesnosti, tetivni grafi, razdaljno dedni grafi, mathematics, graph theory, forbidden subgraphs, induced path, interval function, betweenness axioms, chordal graphs, distance hereditary graphs Objavljeno v DKUM: 10.07.2015; Ogledov: 1306; Prenosov: 103 Povezava na celotno besedilo |
7. Some Steiner concepts on lexicographic products of graphsBijo S. Anand, Manoj Changat, Iztok Peterin, Prasanth G. Narasimha-Shenoi, 2012, izvirni znanstveni članek Opis: The smallest tree that contains all vertices of a subset ▫$W$▫ of ▫$V(G)$▫ is called a Steiner tree. The number of edges of such a tree is the Steiner distance of ▫$W$▫ and union of all Steiner trees of ▫$W$▫ form a Steiner interval. Both of them are described for the lexicographic product in the present work. We also give a complete answer for the following invariants with respect to the Steiner convexity: the Steiner number, the rank, the hull number, and the Carathéodory number, and a partial answer for the Radon number. At the end we locate and repair a small mistake from [J. Cáceres, C. Hernando, M. Mora, I. M. Pelayo, M. L. Puertas, On the geodetic and the hull numbers in strong product graphs, Comput. Math. Appl. 60 (2010) 3020--3031]. Ključne besede: teorija grafov, leksikografski produkt, Steinerjeva konveksnost, Steinerjeva množica, Steinerjeva razdalja, graph theory, lexicographic product, Steiner convexity, Steiner set, Steiner distance Objavljeno v DKUM: 10.07.2015; Ogledov: 1213; Prenosov: 116 Povezava na celotno besedilo |
8. On a local 3-Steiner convexityBoštjan Brešar, Tanja Dravec, 2011, izvirni znanstveni članek Opis: Za dani graf ▫$G$▫ je Steinerjev interval množice vozlišč ▫$W subset V(G)$▫ množica tistih vozlišč, ki ležijo na kakem Steinerjevem drevesu glede na ▫$W$▫. Množica ▫$U subset V(G)$▫ je ▫$g_3$▫-konveksna v ▫$G$▫, če Steinerjev interval poljubne trojice vozlišč iz ▫$U$▫ v celoti leži v ▫$U$▫. Henning, Nielsen in Oellermann (2009) so dokazali, da graf ▫$G$▫, v katerem so ▫$j$▫-krogle ▫$g_3$▫-konveksne za vsak ▫$j ge 1$▫, ne vsebuje hiše niti grafov dvojčkov ▫$C_4$▫ kot induciranih podgrafov in vsak cikel v ▫$G$▫ dolžine vsaj šest je dobro premostljiv. V tem članku dokažemo, da velja tudi obrat tega izreka, s čimer okarakteriziramo grafe z ▫$g_3$▫-konveksnimi kroglami. Ključne besede: matematika, teorija grafov, Steinerjev interval, razdalja, dobra premostljivost, mathematics, graph theory, Steiner interval, distance, well-bridgeness Objavljeno v DKUM: 10.07.2015; Ogledov: 1062; Prenosov: 49 Povezava na celotno besedilo |
9. Steiner intervals, geodesic intervals, and betweennessBoštjan Brešar, Manoj Changat, Joseph Mathews, Iztok Peterin, Prasanth G. Narasimha-Shenoi, Aleksandra Tepeh, 2009, izvirni znanstveni članek Opis: Koncept ▫$k$▫-Steinerjevih intervalov naravno posplošuje geodetske (binarne) intervale. Definiran je kot preslikava ▫$S: Vtimes cdots times V longrightarrow 2^V$▫, kjer je ▫$S(u_1, dots ,u_k)$▫ množica tistih vozlišč grafa ▫$G$▫, ki ležijo na kakem Steinerjevem drevesu glede na multimnožico ▫$W = {u_1, dots ,u_k}$▫ vozlišč iz ▫$G$▫. V tem članku za vsako naravno število ▫$k$▫ dokažemo karakterizacijo razreda tistih grafov, v katerih imajo vsi ▫$k$▫-Steinerjevi intervali t.i. lastnost unije, ki pravi, da ▫$S(u_1,ldots, u_k)$▫ sovpada z unijo geodetskih intervalov ▫$I(u_i,u_j)$▫ med vsemi pari vozlišč iz ▫$W$▫. Izkaže se, da tedaj, ko je ▫$k>3$▫, ta razred sovpada z razredom grafov, v katerih ▫$k$▫-Steinerjev interval zadošča aksiomu monotonosti(m), kot tudi z razredom grafov, v katerih ▫$k$▫-Steinerjev interval zadošča aksiomu (b2), ki sta pogoja iz teorije vmesnosti. In sicer preslikava ▫$S$▫ zadošča aksiomu (m), če iz ▫$x_1, dots ,x_k in S(u_1, dots ,u_k)$▫ sledi ▫$S(x_1, dots ,x_k) subseteq S(u_1, dots ,u_k)$▫; ter ▫$S$▫ zadošča (b2), če iz ▫$x in S(u_1,u_2, dots ,u_k)$▫ sledi ▫$S(x,u_2, dots ,u_k) subseteq S(u_1, dots ,u_k)$▫. V primeru ▫$k=3$▫ so ti trije razredi grafov različni in za razreda grafov, v katerih Steinerjev interval zadošča lastnosti unije oz. aksiomu monotonosti (m), dokažemo strukturni karakterizaciji. Prav tako predstavimo več delnih ugotovitev za razred grafov, v katerih 3-Steinerjev interval zadošča aksimu (b2), ki vodijo do domneve, da so to natanko tisti grafi, v katerih je vsak blok geodetski graf z diametrom 2. Ključne besede: matematika, teorija grafov, Steinerjev interval, geodetski interval, razdalja, vmesnost, monotonost, bločni graf, mathematics, graph theory, Steiner interval, geodesic interval, distance, betweenness, monotonicity, block graph Objavljeno v DKUM: 10.07.2015; Ogledov: 1161; Prenosov: 94 Povezava na celotno besedilo |
10. |