| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 5 / 5
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
On the k-path vertex cover of some graph products
Marko Jakovac, Andrej Taranenko, 2013, izvirni znanstveni članek

Opis: A subset S of vertices of a graph G is called a k-path vertex cover if every path of order k in G contains at least one vertex from S. Denote by ▫$psi_k$▫(G) the minimum cardinality of a k-path vertex cover in G. In this paper, improved lower and upper bounds for ▫$psi_k$▫ of the Cartesian and the strong product of paths are derived. It is shown that for ▫$psi_3$▫ those bounds are tight. For the lexicographic product bounds are presented for ▫$psi_k$▫, moreover ▫$psi_2$▫ and ▫$psi_3$▫ are exactly determined for the lexicographic product of two arbitrary graphs. As a consequence the independence and the dissociation number of the lexicographic product are given.
Ključne besede: matematika, teorija grafov, vozliščno pokritje, po poteh vozliščno pokritje, disociacijsko število, neodvisnostno število, grafovski produkti, mathematics, graph theory, vertex cover, path vertex cover, dissociation number, independence number, graph products
Objavljeno: 10.07.2015; Ogledov: 423; Prenosov: 7
URL Povezava na celotno besedilo

2.
Distinguishing Cartesian powers of graphs
Wilfried Imrich, Sandi Klavžar, 2006, izvirni znanstveni članek

Opis: Razlikovalno število ▫$D(G)$▫ grafa je najmanjše celo število ▫$d$▫, za katero obstaja taka ▫$d$▫-označitev točk grafa ▫$G$▫, da je ne ohranja noben avtomorfizem grafa ▫$G$▫. Dokažemo, da je razlikovalno število kvadrata in višjih potenc povezanega grafa ▫$G ne K_2, K_3$▫, glede na kartezični produkt, vedno enako 2. Ta rezultat je močnejši od rezultatov Albertsona [Electron J Combin, 12 (2005), N17] za potence pra-grafov in tudi od rezultatov Klavžarja and Zhuja [European J. Combin, v tisku]. Bolj splošno, dokažemo tudi, da je ▫$(G Box H) = 2$▫, če sta ▫$G$▫ in ▫$H$▫ relativno tuja grafa in je ▫$|H| le |G| < 2^{|H|} - |H|$▫. Pod podobnimi pogoji veljajo sorodni rezultati tudi za potence grafov glede na krepki in direktni produkt grafov.
Ključne besede: matematika, teorija grafov, razlikovalno število, grafovski avtomorfizem, produkti grafov, mathematics, graph theory, distingushing number, graph automorphism, products of graphs
Objavljeno: 10.07.2015; Ogledov: 314; Prenosov: 41
URL Povezava na celotno besedilo

3.
Cartesian powers of graphs can be distinguished by two labels
Sandi Klavžar, Xuding Zhu, 2007, izvirni znanstveni članek

Opis: The distinguishing number ▫$D(G)$▫ of a graph ▫$G$▫ is the least integer ▫$d$▫ such that there is a ▫$d$▫-labeling of the vertices of ▫$G$▫ which is not preserved by any nontrivial automorphism. For a graph ▫$G$▫ let ▫$G^r$▫ be the ▫$r$▫-th power of ▫$G$▫ with respect to the Cartesian product. It is proved that ▫$D(G^r) = 2$▫ for any connected graph ▫$G$▫ with at least 3 vertices and for any ▫$r = 3$▫. This confirms and strengthens a conjecture of Albertson. Other graph products are also considered and a refinement of the Russell and Sundaram motion lemma is proved.
Ključne besede: matematika, teorija grafov, razlikovalno število, grafovski avtomorfizem, produkti grafov, mathematics, graph theory, distingushing number, graph automorphism, products of graphs
Objavljeno: 10.07.2015; Ogledov: 321; Prenosov: 43
URL Povezava na celotno besedilo

4.
The edge fault-diameter of Cartesian graph bundles
Iztok Banič, Rija Erveš, Janez Žerovnik, 2009, izvirni znanstveni članek

Opis: Kartezični svežnji so posplošitev krovnih grafov in kartezičnih grafovskih produktov. Naj bo ▫$G$▫ nek s povezavami ▫$k_G$▫-povezan graf in ▫${bar{mathcal{D}}_c(G)}$▫ največji premer podgrafov grafa ▫$G$▫ dobljenih z odstranitvijo $▫c < k_G$▫ povezav. Dokazano je, da je ▫${bar{mathcal{D}}_{a+b+1}(G)} le {bar{mathcal{D}}_a(F)} le {bar{mathcal{D}}_b(B)} + 1$▫, če je ▫$G$▫ grafovski sveženj z vlaknom ▫$F$▫ in bazo ▫$B$▫, ▫$a < k_F$▫, ▫$b < k_B▫$. Dokazano je tudi, da je povezanost s povezavami grafovskega svežnja ▫$G▫$ vsaj ▫$k_F + k_B$▫.
Ključne besede: matematika, teorija grafov, kartezični grafovski produkti, kartezični grafovski svežnji, povezavni okvarni premer, mathematics, graph theory, Cartesian graph products, Cartesian graph bundles, edge-fault diameter
Objavljeno: 10.07.2015; Ogledov: 429; Prenosov: 45
URL Povezava na celotno besedilo

5.
Neodvisna dominacija na grafih
Nina Črešnjevec, 2018, magistrsko delo

Opis: V magistrskem delu obravnavamo različne tipe dominacij in sicer dominantno število, neodvisnostno število, neodvisno dominantno število in zgornje dominantno število. Neodvisno dominantno število je raziskano na različnih družinah grafov kot tudi na različnih grafovskih produktih. V prvem delu magistrske naloge smo navedli vse pojme, trditve, izreke, ki jih potrebujemo za razumevanje glavnega problema magistrske naloge. Predstavimo tudi različne razrede grafov in različne dominacije v grafih. V drugem poglavju obravnavamo različne meje neodvisnega dominantnega števila. Predstavljene so splošne meje, ki veljajo na različnih družinah grafov in meje, ki veljajo za dvodelne grafe. Tretje poglavje pa se nanaša na neodvisno dominantno število krepkega, korenskega in kartezičnega produkta. Za nekatere od teh produktov smo prikazali tudi rezultate o neodvisnostnem številu in dominantnem številu.
Ključne besede: dominantno število, neodvisno dominantno število, neodvisnostno število, dominantno popolni grafi, dobro pokriti grafi, grafovski produkti
Objavljeno: 13.07.2018; Ogledov: 162; Prenosov: 35
.pdf Celotno besedilo (1,30 MB)

Iskanje izvedeno v 0.1 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici