| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 4 / 4
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
The distinguishing chromatic number of Cartesian products of two complete graphs
Janja Jerebic, Sandi Klavžar, 2008

Opis: Označitev grafa ▫$G$▫ je razlikovalna, če jo ohranja le trivialni avtomorfizem grafa ▫$G$▫. Razlikovalno kromatično število grafa ▫$G$▫ je najmanjše naravno število, za katero obstaja razlikovalna označitev grafa, ki je hkrati tudi dobro barvanje. Za vse ▫$k$▫ in ▫$n$▫ je določeno razlikovalno kromatično število kartezičnih produktov ▫$K_kBox K_n$▫. V večini primerov je enako kromatičnemu številu, kar med drugim odgovori na vprašanje Choia, Hartkeja and Kaula, ali obstajajo še kakšni drugi grafi, za katere velja enakost.
Ključne besede: teorija grafov, razlikovalno kromatično število, grafovski avtomorfizem, kartezični produkt grafov, graph theory, distinguishing chromatic number, graph automorphism, Cartesian product of graphs
Objavljeno: 10.07.2015; Ogledov: 342; Prenosov: 40
URL Povezava na celotno besedilo

2.
Distinguishing Cartesian powers of graphs
Wilfried Imrich, Sandi Klavžar, 2006, izvirni znanstveni članek

Opis: Razlikovalno število ▫$D(G)$▫ grafa je najmanjše celo število ▫$d$▫, za katero obstaja taka ▫$d$▫-označitev točk grafa ▫$G$▫, da je ne ohranja noben avtomorfizem grafa ▫$G$▫. Dokažemo, da je razlikovalno število kvadrata in višjih potenc povezanega grafa ▫$G ne K_2, K_3$▫, glede na kartezični produkt, vedno enako 2. Ta rezultat je močnejši od rezultatov Albertsona [Electron J Combin, 12 (2005), N17] za potence pra-grafov in tudi od rezultatov Klavžarja and Zhuja [European J. Combin, v tisku]. Bolj splošno, dokažemo tudi, da je ▫$(G Box H) = 2$▫, če sta ▫$G$▫ in ▫$H$▫ relativno tuja grafa in je ▫$|H| le |G| < 2^{|H|} - |H|$▫. Pod podobnimi pogoji veljajo sorodni rezultati tudi za potence grafov glede na krepki in direktni produkt grafov.
Ključne besede: matematika, teorija grafov, razlikovalno število, grafovski avtomorfizem, produkti grafov, mathematics, graph theory, distingushing number, graph automorphism, products of graphs
Objavljeno: 10.07.2015; Ogledov: 310; Prenosov: 40
URL Povezava na celotno besedilo

3.
Cartesian powers of graphs can be distinguished by two labels
Sandi Klavžar, Xuding Zhu, 2007, izvirni znanstveni članek

Opis: The distinguishing number ▫$D(G)$▫ of a graph ▫$G$▫ is the least integer ▫$d$▫ such that there is a ▫$d$▫-labeling of the vertices of ▫$G$▫ which is not preserved by any nontrivial automorphism. For a graph ▫$G$▫ let ▫$G^r$▫ be the ▫$r$▫-th power of ▫$G$▫ with respect to the Cartesian product. It is proved that ▫$D(G^r) = 2$▫ for any connected graph ▫$G$▫ with at least 3 vertices and for any ▫$r = 3$▫. This confirms and strengthens a conjecture of Albertson. Other graph products are also considered and a refinement of the Russell and Sundaram motion lemma is proved.
Ključne besede: matematika, teorija grafov, razlikovalno število, grafovski avtomorfizem, produkti grafov, mathematics, graph theory, distingushing number, graph automorphism, products of graphs
Objavljeno: 10.07.2015; Ogledov: 316; Prenosov: 42
URL Povezava na celotno besedilo

4.
The distinguishing chromatic number of Cartesian products of two complete graphs
Janja Jerebic, Sandi Klavžar, 2010, objavljeni znanstveni prispevek na konferenci

Opis: Označitev grafa ▫$G$▫ je razlikovalna, če jo ohranja le trivialni avtomorfizem grafa ▫$G$▫. Razlikovalno kromatično število grafa ▫$G$▫ je najmanjše naravno število, za katero obstaja razlikovalna označitev grafa, ki je hkrati tudi dobro barvanje. Za vse ▫$k$▫ in ▫$n$▫ je določeno razlikovalno kromatično število kartezičnih produktov ▫$K_kBox K_n$▫. V večini primerov je enako kromatičnemu številu, kar med drugim odgovori na vprašanje Choia, Hartkeja and Kaula, ali obstajajo še kakšni drugi grafi, za katere velja enakost.
Ključne besede: teorija grafov, razlikovalno kromatično število, grafovski avtomorfizem, kartezični produkt grafov, graph theory, distinguishing chromatic number, graph automorphism, Cartesian product of graphs
Objavljeno: 10.07.2015; Ogledov: 299; Prenosov: 49
URL Povezava na celotno besedilo

Iskanje izvedeno v 0.13 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici