| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 2 / 2
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Mathematical model-based optimization of trace metal dosage in anaerobic batch bioreactors
Tina Kegl, Balasubramanian Paramasivan, Bikash Chandra Maharaj, 2025, izvirni znanstveni članek

Opis: Anaerobic digestion (AD) is a promising and yet a complex waste-to-energy technology. To optimize such a process, precise modeling is essential. Developing complex, mechanistically inspired AD models can result in an overwhelming number of parameters that require calibration. This study presents a novel approach that considers the role of trace metals (Ca, K, Mg, Na, Co, Cr, Cu, Fe, Ni, Pb, and Zn) in the modeling, numerical simulation, and optimization of the AD process in a batch bioreactor. In this context, BioModel is enhanced by incorporating the influence of metal activities on chemical, biochemical, and physicochemical processes. Trace metal-related parameters are also included in the calibration of all model parameters. The model’s reliability is rigorously validated by comparing simulation results with experimental data. The study reveals that perturbations of 5% in model parameter values significantly increase the discrepancy between simulated and experimental results up to threefold. Additionally, the study highlights how precise optimization of metal additives can enhance both the quantity and quality of biogas production. The optimal concentrations of trace metals increased biogas and CH4 production by 5.4% and 13.5%, respectively, while H2, H2S, and NH3 decreased by 28.2%, 43.6%, and 42.5%, respectively.
Ključne besede: anaerobic digestion, batch bioreactor, methane production, model parameters calibration, active set optimization method, perturbation of model parameter, gradient based optimization, trace metals
Objavljeno v DKUM: 30.01.2025; Ogledov: 0; Prenosov: 3
.pdf Celotno besedilo (4,66 MB)

2.
Improvement of biogas production utilizing a complex anaerobic digestion model and gradient-based optimization
Tina Kegl, Breda Kegl, Marko Kegl, 2024, izvirni znanstveni članek

Opis: : Anaerobic digestion (AD) is a promising technology for renewable energy production from organic waste. In order to maximize the produced biogas quantity and quality, this paper deals with the optimization of the AD process in a CSTR bioreactor of a full-scale biogas plant. For this purpose, a novel approach was adopted coupling, a highly complex BioModel for AD simulation, and a gradient-based optimization method. In order to improve AD performance, the dosages of various types of biological additives, the dosages of inorganic additives, and the temperature in the bioreactor were optimized in three different scenarios. The best biogas quality was obtained using multi-objective optimization, where the objective function involves the following two conflicting objectives: the maximization of biogas production and minimization of the needed heating energy. The obtained results show that, potentially, the content of CH4 can be increased by 11%, while the contents of H2, H2S, and NH3 can be reduced by 30%, 20%, and 81% when comparing the simulation results with the experimental data. The obtained results confirm the usefulness of the proposed approach, which can easily be adapted or upgraded for other bioreactor types.
Ključne besede: additives, anaerobic digestion, approximation method, BioModel, complex substrate, gradient-based optimization, process conditions
Objavljeno v DKUM: 12.03.2024; Ogledov: 298; Prenosov: 30
.pdf Celotno besedilo (7,33 MB)
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.05 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici