| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


41 - 42 / 42
Na začetekNa prejšnjo stran12345Na naslednjo stranNa konec
41.
Uporaba globokega učenja s knjižnico Deeplearning4j na primeru prepoznave obrazov
Grega Vrbančič, 2017, magistrsko delo

Opis: V magistrskem delu smo se dotaknili področja globokega učenja, spoznali smo pristope in arhitekture algoritmov globokega učenja ter jih kategorizirali v tri skupine. V nadaljevanju smo podrobneje analizirali knjižnico Deeplearning4j, predstavili osnovne funkcionalnosti ter raziskali njene možnosti za uporabo na področju globokega učenja. V praktičnem delu smo uporabo globokega učenja s knjižnico Deeplearning4j aplicirali na primeru prepoznave obrazov. Implementirali smo dve različici konvolucijskih nevronskih mrež ter dva načina učenja – lokalno ter porazdeljeno učenje.
Ključne besede: strojno učenje, globoko učenje, Deeplearning4j, prepoznava obraza
Objavljeno v DKUM: 17.10.2017; Ogledov: 1615; Prenosov: 266
.pdf Celotno besedilo (7,06 MB)

42.
Napovedovanje odpovedi izdelkov z metodami globokega učenja
Blaž Sašek, 2017, diplomsko delo/naloga

Opis: Diplomsko delo obravnava razvoj in optimizacijo modelov za analizo garancijskih podatkov in napovedovanje odpovedi z metodami globokega učenja. Globoko učenje je redko uporabljeno v tovrstne namene, zato so raziskave na tem področju pomembne, a obenem težavne, saj obstaja manj predhodnih virov, s katerimi si lahko pomagamo. Na drugi strani pa se tehnologija v zadnjih letih razvija izjemno hitro, tako da lahko modele globokega učenja implementiramo tudi brez detajlnega poznavanja vseh elementov globokega učenja, kar je omogočilo razcvet uporabe in aplikacijo globokega učenja na široko paleto problemov. V nalogi smo preizkusili več različnih modelov, od prilagojenega enoslojnega perceptrona do konvolucijske nevronske mreže, in večje število optimizacijskih metod. Z uporabljenimi metodami smo dosegli 30–40-% stopnjo natančnosti, kar odstopa od želene 10-% stopnje napake. Pri tem moramo upoštevati majhen nabor vhodnih podatkov. Metode globokega učenja se ob zastavljenem zahtevnem pogoju niso izkazale kot primerne za uporabo, iz pridobljenih informacij pa zaključujemo, da bodo metode najverjetneje uporabne v prihodnje, ko bo na voljo več podatkov, ki bodo tudi bolj kvalitetni.
Ključne besede: Garancijski podatki, Strojno učenje, Nevronske mreže, Globoko učenje, Python, Tensorflow
Objavljeno v DKUM: 14.09.2017; Ogledov: 4647; Prenosov: 797
.pdf Celotno besedilo (3,16 MB)

Iskanje izvedeno v 0.06 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici