SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 7 / 7
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Uporaba globokega učenja s knjižnico Deeplearning4j na primeru prepoznave obrazov
Grega Vrbančič, 2017, magistrsko delo

Opis: V magistrskem delu smo se dotaknili področja globokega učenja, spoznali smo pristope in arhitekture algoritmov globokega učenja ter jih kategorizirali v tri skupine. V nadaljevanju smo podrobneje analizirali knjižnico Deeplearning4j, predstavili osnovne funkcionalnosti ter raziskali njene možnosti za uporabo na področju globokega učenja. V praktičnem delu smo uporabo globokega učenja s knjižnico Deeplearning4j aplicirali na primeru prepoznave obrazov. Implementirali smo dve različici konvolucijskih nevronskih mrež ter dva načina učenja – lokalno ter porazdeljeno učenje.
Ključne besede: strojno učenje, globoko učenje, Deeplearning4j, prepoznava obraza
Objavljeno: 17.10.2017; Ogledov: 336; Prenosov: 73
.pdf Celotno besedilo (7,06 MB)

2.
Napovedovanje odpovedi izdelkov z metodami globokega učenja
Blaž Sašek, 2017, diplomsko delo/naloga

Opis: Diplomsko delo obravnava razvoj in optimizacijo modelov za analizo garancijskih podatkov in napovedovanje odpovedi z metodami globokega učenja. Globoko učenje je redko uporabljeno v tovrstne namene, zato so raziskave na tem področju pomembne, a obenem težavne, saj obstaja manj predhodnih virov, s katerimi si lahko pomagamo. Na drugi strani pa se tehnologija v zadnjih letih razvija izjemno hitro, tako da lahko modele globokega učenja implementiramo tudi brez detajlnega poznavanja vseh elementov globokega učenja, kar je omogočilo razcvet uporabe in aplikacijo globokega učenja na široko paleto problemov. V nalogi smo preizkusili več različnih modelov, od prilagojenega enoslojnega perceptrona do konvolucijske nevronske mreže, in večje število optimizacijskih metod. Z uporabljenimi metodami smo dosegli 30–40-% stopnjo natančnosti, kar odstopa od želene 10-% stopnje napake. Pri tem moramo upoštevati majhen nabor vhodnih podatkov. Metode globokega učenja se ob zastavljenem zahtevnem pogoju niso izkazale kot primerne za uporabo, iz pridobljenih informacij pa zaključujemo, da bodo metode najverjetneje uporabne v prihodnje, ko bo na voljo več podatkov, ki bodo tudi bolj kvalitetni.
Ključne besede: Garancijski podatki, Strojno učenje, Nevronske mreže, Globoko učenje, Python, Tensorflow
Objavljeno: 14.09.2017; Ogledov: 390; Prenosov: 98
.pdf Celotno besedilo (3,16 MB)

3.
Napovedovanje GPS sledi z globokimi nevronskimi mrežami
Jernej Borlinić, 2018, magistrsko delo

Opis: Metode strojnega učenja vse bolj prodirajo v vsa področja modernega gospodarskega in raziskovalnega okolja. Obstoječi algoritmi dosegajo vrhunske rezultate pri nalogah kot so prepoznavanje slik, razumevanje besedil in govora ipd. Avtomatizirane rešitve takšnih nalog so še nedavno veljale za nedosegljive. V tej magistrski nalogi pregledamo najpopularnejše globoke nevronske mreže, iz njih sestavljene modele in njihove načine učenja. S pridobljenim znanjem in večkratnim testiranjem v drugem delu, razvijemo model globoke nevronske mreže za napovedovanje GPS sledi. Osnovno testiranje modela poteka na lastnem naboru sintetično ustvarjenih podatkov. Dva najuspešnejša modela v nadaljevanju učimo s pomočjo izbranih realnih podatkov pridobljenih od podjetja GoOpti d. o. o. Končni izpopolnjen model pa učimo z razširjenim naborom realnih podatkov. V magistrski nalogi so opisani izbira in implementacija modela, način učenja, ustvarjanje in pridobivanje naborov podatkov in pridobljeni rezultati.
Ključne besede: Strojno učenje, globoko učenje, globoke nevronske mreže, povratne nevronske mreže.
Objavljeno: 13.12.2018; Ogledov: 108; Prenosov: 28
.pdf Celotno besedilo (9,58 MB)

4.
Prepoznavanje aktivnosti osebe iz zaporedja slik s pomočjo konvolucijskih nevronskih mrež
Mihael Baketarić, 2018, diplomsko delo

Opis: V diplomskem delu smo se ukvarjali s prepoznavanjem aktivnosti osebe iz zaporedja slik. Omejili smo se na aktivnosti: stoji, sedi, leži, hitro hodi, počasi hodi in pada. Pregledali smo obstoječe postopke prepoznavanja, pripravili množico podatkov, preučili konvolucijske nevronske mreže in jih uporabili pri reševanju našega problema. Naš algoritem je sestavljen iz dveh korakov: iz izločevanja oseb iz slik in prepoznavanja aktivnosti. Oba koraka smo implementirali z uporabo konvolucijskih nevronskih mrež in analizirali rezultate. Za učenje in testiranje smo uporabili lastno podatkovno zbirko, ki je vsebovala video posnetke 6-ih različnih oseb, ki so izvajali vseh šest aktivnosti. Na veliko slikah oseba ni bila pravilno izločena oz. detektirana, zato se je naša množica podatkov občutno zmanjšala po odstranitvi takšnih slik. Naš postopek smo preverili s 6-kratno navzkrižno validacijo. Povprečna uspešnost prepoznavanja aktivnosti je bila 36 %, kar seveda ni dovolj visoko za realne aplikacije. Ugotavljamo, da se pri rezultatih prepoznavanja aktivnosti močno pozna dejstvo, da v našem postopku nismo upoštevali časovne komponente oz. rezultatov prepoznav na predhodnih slikah.
Ključne besede: računalniški vid, konvolucijska nevronska mreža, globoko učenje, detekcija oseb, prepoznavanje aktivnosti osebe
Objavljeno: 19.10.2018; Ogledov: 83; Prenosov: 44
.pdf Celotno besedilo (1,55 MB)

5.
Detekcija karakterističnih točk na rentgenskih posnetkih glave s pomočjo tehnik globokega učenja
Gašper Sedej, 2018, magistrsko delo

Opis: V tem magistrskem delu smo se ukvarjali s sistemom za detekcijo karakterističnih točk na slikovnih podatkih. Izdelali smo splošen sistem za avtomatsko zaznavanje karakterističnih točk, ki smo ga prilagodili za kefalometrične točke na rentgenskih slikah. Kot detektor smo uporabili obstoječo globoko nevronsko mrežo SegNet, ki je namenjena segmentiranju slik. To mrežo smo modificirali za iskanje karakterističnih točk. Novo mrežo smo poimenovali KeypointNet. Izdelali smo tudi sistem za označevanje točk na slikah. Detektor smo učili z učno množico. Na testni množici smo izvedli detekcijo in izmerili napako, ki jo definiramo kot evklidsko razdaljo med napovedano in označeno točko. Testirali smo tudi nabor krmilnih hiperparametrov pri zagonu učenja. Sistem smo testirali na množici 124 kefalometričnih slik velikosti 480 × 360 pikslov, in sicer za nabor 10 izbranih točk. Na vseh slikah smo označili te točke. Slike smo razdelili v učno in testno množico v razmerju približno 75 % in 25 %. Testirali smo 16 naborov hiperparametrov. Za vsak nabor smo izvedli 5 ponovitev učenja. Povprečna napaka v položaju točke na testni množici je bila 2,7 piksla. Testirali smo tudi vpliv dveh hiperparametrov za nadzor učenja. Testi so pokazali, da rahel odklon od priporočenih vrednosti za ta dva hiperparametra nima signifikantnega vpliva na končni rezultat. Dobljeni rezultati so zelo spodbudni. Razvili smo torej napreden sistem na osnovi globokega učenja, ki uspešno detektira karakteristične točke na slikah.
Ključne besede: globoko učenje, nevronske mreže, kefalometrija, razpoznavanje vzorcev, optimizacija, paralelno izvajanje
Objavljeno: 10.01.2019; Ogledov: 219; Prenosov: 28
.pdf Celotno besedilo (5,14 MB)

6.
Sistem strojnega vida za prepoznavo površinskih napak
Marcel Petek, 2019, magistrsko delo

Opis: Magistrsko delo podaja pregled metod za propoznavo površinskih napak na obdelovancih. Objekti opazovanja so krmilne tipke, podsklop ohišij v elektroomaricah. Predstavljene bodo tri metode razvrščanja krmilnih tipk v dober in slab razred. Zajemanje slik je bilo opravljeno s pomočjo laboratorijske opreme, saj so elementi opreme višjega cenovnega razreda. Namen magistrske naloge je v bazah slik krmilnih tipk z različnimi metodami prepoznati napake in jih razvrstiti v pripadajoči razred. Zaradi specifičnosti problematike zaznavanja so se metode prilagajale problemu. Uporabili smo metode prepoznave napak na nadzorovan in nenadzorovan način, torej globinsko učenje z uporabo nevronske mreže, avtoenkoderja in klasično pragovno metodo z uporabo različnih detektorjev robov in preglednih tabel. Omenjene globoke metode se dandanes ne uporabljajo v veliki meri za industrijske namene. Metode so se namreč izboljšale do te mere, da veliki koncerni, kot so IBM, Google, Facebook, uporabniku napram preteklim iskalnim nizom v brskalniku predlagajo, kaj naj bi iskal po svetovnem spletu. Za izbiro globokega učenja namesto genetskega ali algoritma rojev delcev smo se odločili izključno zaradi hitre prilagoditve programa na vhodne parametre in razvoja programa od preteklosti, ko je nivo globine nevronskih mrež bila samo ena prikrita plast z enim nevronom, do danes, ko se lahko nivo adaptivno spreminja glede na vhodno problematiko. Dostopni algoritmi za zaznavanje defektov na teksturah, ki smo jih preizkusili v komercialnih paketih (Vision NI), niso bili učinkoviti za detekcijo teh nepravilnosti. To je motivacija za raziskovanje učinkovitosti drugih pristopov in za primerjavo učinkovitosti. S primerjavo metod bomo za nadaljnje raziskovanje izbrali tisto, ki bo dosegla cilj, 95-odstotno stopnjo natančnosti razvrstitve v razreda dober in slab. Začetni cilj razvrstitve smo uspeli dosečti z uporabo globokega učenja nevronskih mrež.
Ključne besede: avtoenkoder, strojni vid, razvrščanje, globoko učenje, nevronska mreža
Objavljeno: 19.02.2019; Ogledov: 218; Prenosov: 42
.pdf Celotno besedilo (5,01 MB)

7.
Uporaba globokega učenja in strojnega vida za prepoznavanje objektov v proizvodnih sistemih
Jernej Hernavs, 2019, magistrsko delo

Opis: Delo opisuje nekaj najsodobnejših pristopov reševanja inženirskih problemov z uporabo globokega učenja in predstavlja sistem za zaznavanje okolice v dinamičnem proizvodnem okolju. Algoritmi strojnega učenja ponujajo v kombinaciji z optičnimi senzorji (kamerami) možnost reševanja izjemno kompleksnih problemov, katerim so do sedaj bili kos le ljudje. Avtomatizacija procesov, pretok informacij med stroji in ljudmi ter pametna analiza podatkov s procesiranjem v oblaku, so le nekateri izzivi, ki jih naslavlja Industrija 4.0. Magistrsko delo predstavlja dinamičen sistem strojnega vida, ki ponuja rešitev na področju klasifikacije in lokalizacije poljubnih objektov v proizvodnih sistemih.
Ključne besede: proizvodni sistemi, strojni vid, globoko učenje, industrija 4.0
Objavljeno: 01.03.2019; Ogledov: 128; Prenosov: 46
.pdf Celotno besedilo (3,55 MB)

Iskanje izvedeno v 0.22 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici