| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 10 / 13
Na začetekNa prejšnjo stran12Na naslednjo stranNa konec
1.
GNSS monitoring of geologically demanding areas
Boštjan Kovačič, Boško Pribičević, Rok Kamnik, 2016, izvirni znanstveni članek

Opis: Displacement research using the three-dimensional global navigation satellite system (GNSS) as part of geodetic monitoring is becoming the key investigation for establishing a cause-and-effect relationships model between external natural factors, on the one hand, and the criteria that describes the level of functionality and safety of the observed natural or artificial object, on the other, in cases of motion of an object in space and time. The main objective of the deformation analysis is to confirm the stabilities of the reference points of a geodetic network, which are used to determine the movements of the control points that are stabilized on the observed objects. The assumption about the stabilities of certain reference points must be based on reasonable grounds, underpinned by measurements and proven by numerical methods. This is one part of the results of the deformation analysis when determining the extent of the movements and deformations. To do this a transformation is used in which a comparison is made between the coordinates of the points for two separate epochs. On the basis of the estimated transformation parameters, possible movements can be concluded within the reference points, i.e., on whether the datum parameters have changed. After confirming the stability of the geodetic network the coordinate differences of identical points measured within the different time windows can be determined as displacements and/or deformations of an object. In this paper one viaduct was assessed through geology and tectonic activities and also a load test of the viaduct was performed. The viaduct is in a quite active region, but the load test showed that the bridge response to the load is as expected.
Ključne besede: geodesy, geotehnics, monitoring, GNSS measurements, geology, deformation analysis, geodetic network
Objavljeno: 18.06.2018; Ogledov: 724; Prenosov: 43
.pdf Celotno besedilo (630,78 KB)
Gradivo ima več datotek! Več...

2.
Displacements in the exploratory tunnel ahead of the excavation face of Šentvid tunnel
Jure Klopčič, Janko Logar, Tomaž Ambrožič, Andrej Štimulak, Aleš Marjetič, Sonja Bogatin, Bojan Majes, 2006, izvirni znanstveni članek

Opis: Fitting the displacement function to the measured displacements enables the assessment of the stabilization process of the observed cross section and the determination of its normal behaviour. The displacement function consists of three parts. Whilst the third part has been successfully applied for several times and thus proven to be very well defined, the first two parts were defined only on the basis of numerical simulations. To overcome this deficiency and to obtain the necessary coefficients of the pre-face part of the displacement function, the 3D displacement measurements ahead of the face due to tunneling should be performed. Such measurements were performed in the exploratory tunnel of the Šentvid tunnel during the excavation of the main tunnel. This paper presents the Šentvid tunnel project, the method of the 3D displacement measurements, the results of these measurements and their interpretation according to the geological structure of the site with an emphasis on items important for the coefficients of the displacement function.
Ključne besede: tunnels, exploratory tunnel, geodetic displacement measurements, pre-face displacements
Objavljeno: 17.05.2018; Ogledov: 820; Prenosov: 51
.pdf Celotno besedilo (660,40 KB)
Gradivo ima več datotek! Več...

3.
Strong edge geodetic problem in networks
Paul Manuel, Sandi Klavžar, Antony Xavier, Andrew Arokiaraj, Elizabeth Thomas, 2017, izvirni znanstveni članek

Opis: Geodesic covering problems form a widely researched topic in graph theory. One such problem is geodetic problem introduced by Harary et al. Here we introduce a variation of the geodetic problem and call it strong edge geodetic problem. We illustrate how this problem is evolved from social transport networks. It is shown that the strong edge geodetic problem is NP-complete. We derive lower and upper bounds for the strong edge geodetic number and demonstrate that these bounds are sharp. We produce exact solutions for trees, block graphs, silicate networks and glued binary trees without randomization.
Ključne besede: geodetic problem, strong edge geodetic problem, computational complexity, transport networks
Objavljeno: 03.11.2017; Ogledov: 592; Prenosov: 326
.pdf Celotno besedilo (657,86 KB)
Gradivo ima več datotek! Več...

4.
A note on Steiner intervals and betweenness
Manoj Changat, Anandavally K. Lakshmikuttyamma, Joseph Mathews, Iztok Peterin, Prasanth G. Narasimha-Shenoi, Aleksandra Tepeh, 2011, izvirni znanstveni članek

Opis: Geodetka in geodetski interval, ki je sestavljen iz vseh vozlišč, ki pripadajo kakšni geodetki med fiksnim parom vozlišč v povezanem grafu ▫$G$▫, sta sestavni del metrične teorije grafov. Prav tako je znano, da je Steinerjevo drevo (multi) množice s ▫$k$▫ (▫$k>2$▫) vozlišči, posplošitev geodetke. V (B. Brešar, M. Changat, J. Mathews, I. Peterin, P. G. Narasimha-Shenoi, A. Tepeh Horvat, Steiner intervals, geodesic intervals, and betweenness, Discrete Math. 309 (2009) 6114--6125) so se avtorji ukvarjali s ▫$k$▫-Steinerjevimi intervali ▫$S(u_{1},u_{2},ldots, u_{k})$▫ povezanih grafov (▫$k geq 3$▫) kot ▫$k$▫-arnimi posplošitvami geodetskih intervalov. Analogno sta bila iz binarne na ▫$k$▫-arno funkcijo posplošena tudi vmesnostni aksiom (b2) in monotoni aksiom(m) kot: za vsa vozlišča ▫$u_{1}, ldots, u_{k}, x, x_{1}, ldots, x_{k} in V(G)$▫, ki niso nujno različna ▫$$(b2)quad x in S(u_{1}, u_{2}, ldots, u_{k}) Rightarrow S(x, u_{2}, ldots, u_{k}) subseteq S(u_{1}, u_{2}, ldots, u_{k}),$$▫ ▫$$(m) quad x_{1}, ldots, x_{k} in S(u_{1}, ldots, u_{k})Rightarrow S(x_{1}, ldots,x_{k}) subseteq S(u_{1}, ldots, u_{k}).$$▫ Avtorji so v zgoraj omenjenem članku domnevali, da ▫$3$▫-Steinerjev interval povezanega grafa ▫$G$▫ zadošča vmesnostnemu aksiomu (b2) natanko tedaj, ko je vsak blok grafa ▫$G$▫ geodetski z diametrom največ 2. V tem delu dokažemo to domnevo. Pri tem dodatno dokažemo, da v vsakem geodetskem bloku z diametrom vsaj 3 obstaja izometrični cikel dolžine ▫$2k+1$▫, ▫$k>2$▫. Prav tako predstavimo dodaten aksiom (b2(2)), ki je smiseln le za 3-Steinerjeve intervale in pokažemo, da je le ta ekvivalenten monotonemu aksiomu.
Ključne besede: matematika, teorija grafov, Steinerjev interval, geodetski graf, vmesnost, mathematics, graph theory, Steiner interval, geodetic graph, betweenness
Objavljeno: 10.07.2015; Ogledov: 605; Prenosov: 63
URL Povezava na celotno besedilo

5.
The geodetic number of the lexicographic product of graphs
Boštjan Brešar, Tadeja Kraner Šumenjak, Aleksandra Tepeh, 2011, izvirni znanstveni članek

Opis: Množica ▫$S$▫ vozlišč grafa ▫$G$▫ je geodetska, če vsako vozlišče grafa ▫$G$▫ leži na intervalu med dvema vozliščema iz ▫$S$▫. Velikost najmanjše geodetske množice grafa ▫$G$▫ se imenuje geodetsko število ▫$g(G)$▫ grafa ▫$G$▫. V članku dokažemo, da geodetsko število leksikografskega produkta ▫$G circ H$▫, kjer ▫$H$▫ ni poln graf, leži med 2 in ▫$3g(G)$▫. Okarakteriziramo vse grafe ▫$G$▫ in ▫$H$▫, za katere je ▫$G circ H = 2$▫, kot tudi leksikografske produkte ▫$T circ H$▫, za katere je ▫$g(T circ H) = 3g(G)$▫, kjer je ▫$T$▫ izomorfen drevesu. Z uporabo novega koncepta geodominantnih trojic grafa ▫$G$▫ najdemo formulo, ki določi točno geodetsko število ▫$G circ H$▫, kjer je ▫$G$▫ poljuben graf in ▫$H$▫ graf, ki ni poln.
Ključne besede: matematika, teorija grafov, leksikografski produkt, geodetsko število, geodominantna trojica, mathematics, graph theory, lexicographic product, geodetic number, geodominating triple
Objavljeno: 10.07.2015; Ogledov: 629; Prenosov: 69
URL Povezava na celotno besedilo

6.
Geodetic sets in graphs
Boštjan Brešar, Matjaž Kovše, Aleksandra Tepeh, 2011, samostojni znanstveni sestavek ali poglavje v monografski publikaciji

Opis: Na kratko so povzeti rezultati o geodetskih množicah v grafih. Po pregledu rezultatov iz prejšnjih raziskav se posvetimo geodetskemu številu in sorodnim invariantam v grafih. Podrobno so obravnavane geodetske množice kartezičnih produktov grafov in geodetske množice v medianskih grafih. Predstavljen je tudi algoritmični vidik in povezava z nekaterimi ostalimi koncepti iz teorije konveksnih in intervalskih struktur v grafih.
Ključne besede: matematika, teorija grafov, geodetsko število, geodetska množica, kartezični produkt, medianski graf, mejna množica, mathematics, graph theory, geodetic number, geodetic set, Cartesian product, median graph, boundary set
Objavljeno: 10.07.2015; Ogledov: 407; Prenosov: 23
URL Povezava na celotno besedilo

7.
On the remoteness function in median graphs
Kannan Balakrishnan, Boštjan Brešar, Manoj Changat, Wilfried Imrich, Sandi Klavžar, Matjaž Kovše, Ajitha R. Subhamathi, 2009, izvirni znanstveni članek

Opis: Profil grafa ▫$G$▫ je poljubna neprazna multimnožica vozlišč iz ▫$G$▫. Pripadajoča funkcija oddaljenosti priredi vsakemu vozlišču iz ▫$V(G)$▫ vsoto razdalj do vozlišč iz profila. Najprej so dobljene nekatere uporabne lastnosti funkcije oddaljenosti na hiperkockah, nato pa je funkcija oddaljenosti obravnavana na poljubnih medianskih grafih glede na njihove izometrične vložitve v hiperkocke. V posebnem je najdena povezava med vozlišči medianskega grafa ▫$G$▫, katerega funkcija oddaljenosti je največja (antimedianska množica v ▫$G$▫), z antimediansko množico pripadajoče hiperkocke. Medtem ko je za lihe profile antimedianska množica neodvisna množica, ki leži na strogem robu medianskega grafa, obstajajo medianski grafi, v katerih določeni sodi profili porajajo konstantno funkcijo oddaljenosti. Take medianske grafe karakteriziramo na dva načina: kot grafe, katerih periferna transverzala je 2, in kot grafe z geodetskim številom 2. Nazadnje predstavimo algoritem, ki za dani graf ▫$G$▫ z ▫$n$▫ vozlišči in ▫$m$▫ povezavami v času ▫$O(m log n)$▫ odloči, ali je ▫$G$▫ medianski graf z geodetskim številom 2.
Ključne besede: hiperkocka, medianski graf, medianska množica, funkcija oddaljenosti, geodetsko število, periferna transverzala, median graph, median set, remoteness function, geodetic number, periphery transverzal, hypercube
Objavljeno: 10.07.2015; Ogledov: 681; Prenosov: 89
URL Povezava na celotno besedilo

8.
On the geodetic number and related metric sets in Cartesian product graphs
Boštjan Brešar, Sandi Klavžar, Aleksandra Tepeh, 2008, izvirni znanstveni članek

Opis: Množica vozlišč ▫$S$▫ grafa ▫$G$▫ je geodetska množica, če vsako vozlišče grafa ▫$G$▫ leži na vsaj enem intervalu med vozliščema iz ▫$S$▫. Moč najmanjše geodetske množice v ▫$G$▫ imenujemo geodetsko število grafa ▫$G$▫. Dokazana je zgornja meja za geodetsko število kartezičnega produkta in za nekatere razrede grafov je dobljena tudi natančna vrednost. Prav tako je dokazano, da imajo mnoge metrično definirane množice v kartezičnih produktih produktno strukturo in da je konturna množica v kartezičnem produktu geodetska natanko tedaj, ko sta njeni projekciji geodetski množici v faktorjih.
Ključne besede: matematika, teorija grafov, kartezični produkt, geodetsko število, geodetska množica, konturna množica, mathematics, graph theory, Cartesian product, geodetic number, geodetic set, contour set
Objavljeno: 10.07.2015; Ogledov: 619; Prenosov: 84
URL Povezava na celotno besedilo

9.
On the geodetic number of median graphs
Boštjan Brešar, Aleksandra Tepeh, 2008, izvirni znanstveni članek

Opis: Množica vozlišč ▫$S$▫ v grafu se imenuje geodetska množica, če vsako vozlišče tega grafa leži na kaki najkrajši poti med dvema vozliščema iz množice ▫$S$▫. V članku raziskujemo najmanjše geodetske množice medianskih grafov z ozirom na operacijo periferne ekspanzije. Spotoma obravnavamo geodetske množice medianskih prizem in karakteriziramo medianske grafe, ki imajo geodetsko množico velikosti 2.
Ključne besede: matematika, teorija grafov, medianski grafi, geodetsko število, geodetska množica, kartezični produkt grafov, ekspanzija, mathematics, graph theory, median graphs, geodetic number, geodetic set, Cartesian product, geodesic, expansion
Objavljeno: 10.07.2015; Ogledov: 674; Prenosov: 61
URL Povezava na celotno besedilo

10.
Median graphs, the remoteness function, periphery transversals, and geodetic number two
Kannan Balakrishnan, Boštjan Brešar, Manoj Changat, Wilfried Imrich, Sandi Klavžar, Matjaž Kovše, Ajitha R. Subhamathi, 2008

Opis: Periferna transverzala medianskega grafa ▫$G$▫ je vpeljana kot množica vozlišč, ki zadane vse periferije grafa $G$. S pomočjo tega koncepta so na dva različna načina karakterizirani medianski grafi z geodetskim številom 2. To so natanko tisti medianski grafi, ki vsebujejo periferno transverzalo moči 2, kot tudi medianski grafi, za katere obstaja takšen profil, da je funkcija oddaljenosti konstantna na ▫$G$▫. Predstavljen je tudi algoritem, ki v času ▫$O(m log n)$▫ odloči, ali je dani graf z ▫$n$▫ vozlišči in ▫$m$▫ povezavami medianski graf z geodetskim številom 2. Dobljenih je še več nadaljnjih lastnosti funkcije oddaljenosti na hiperkockah in medianskih grafih. Navedenih je tudi nekaj odprtih problemov.
Ključne besede: medianski graf, medianska množica, funkcija oddaljenosti, geodetsko število, periferna transverzala, median graph, median set, remoteness function, geodetic number, periphery transverzal, hypercube
Objavljeno: 10.07.2015; Ogledov: 669; Prenosov: 18
URL Povezava na celotno besedilo

Iskanje izvedeno v 0.16 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici