| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 2 / 2
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Heat conduction in closed-cell cellular metals
Matej Vesenjak, Zoran Žunič, Andreas Öchsner, Matjaž Hriberšek, Zoran Ren, 2005, izvirni znanstveni članek

Opis: The purpose of this research was to describe the thermal transport properties in closed-cell cellular metals. Influence of cell size variations with different pore gases has been investigated with transient computational simulations. Heat conduction through the base material and gas in pores (cavities) was considered, while the convection and radiation were neglected in the initial stage of this research. First, parametric analysis for definingthe proper mesh density and time step were carried out. Then, two-dimensional computational models of the cellular structure, consisting of the base material and the pore gas, have been solved using ANSYS CFX software within the framework of finite volume elements. The results have confirmed theexpectations that the majority of heat is being transferred through the metallic base material with almost negligible heat conduction through the gas in pores. The heat conduction in closed-cell cellular metals is therefore extremely depended on the relative density but almost insensitive regarding tothe gas inside the pore, unless the relative density is very low.
Ključne besede: heat transfer, cellular metal materials, porous materials, closed cells, gas fillers, computational simulations
Objavljeno v DKUM: 01.06.2012; Ogledov: 2314; Prenosov: 102
URL Povezava na celotno besedilo

2.
Thermal post-impact behaviour of closed-cell cellular structures with fillers
Matej Vesenjak, Andreas Öchsner, Zoran Ren, 2007, izvirni znanstveni članek

Opis: The study describes the behavior of regular closed-cell cellular structure with gaseous fillers under impact conditions and consequent post-impact thermal conduction due to the compression of filler gas. Two dependent but different analyses types have been carried out for this purpose: (i) a strongly coupled fluid-structure interaction and (ii) a weakly coupled thermal- structural analysis. This paper describes the structural analyses of the closed-cell cellular structure under impact loading. The explicit code LS-DYNA was used to computationally determine the behavior of cellular structure under compressive dynamic loading, where one unit volume element of the cellular structure has been discretised with finite elements considering a simultaneous strongly coupled interaction with the gaseous pore filler. Closed-cell cellular structures with different relative densities and initial pore pressures have been considered. Computational simulations have shown that the gaseous filler influences the mechanical behavior of cellular structure regarding the loading type, relative density and type of the base material. It was determined that the filler's temperature significantly increases due to the compressive impact loading, which might influence the macroscopic behavior of the cellular structure.
Ključne besede: mechanics, cellular structures, closed cells, gas fillers, impact loading, fluid-structure interaction, dynamic loads, LS-DYNA, ANSYS CFX 10.0, computational simulations
Objavljeno v DKUM: 31.05.2012; Ogledov: 1851; Prenosov: 36
URL Povezava na celotno besedilo

Iskanje izvedeno v 0.07 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici