| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 2 / 2
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
The influence of the ratio of circumference to cross-sectional area of tensile bars on the fatigue life of additive manufactured AISI 316L steel
Luka Ferlič, Filip Jerenec, Mario Šercer, Igor Drstvenšek, Nenad Gubeljak, 2024, izvirni znanstveni članek

Opis: The static and dynamic loading capacities of components depend on the stress level to which the material is exposed. The fatigue behavior of materials manufactured using additive technology is accompanied by a pronounced scatter between the number of cycles at the same stress level, which is significantly greater than the scatter from a material with the same chemical composition, e.g., AISI 316L, but produced by rolling or forging. An important reason lies in the fact that fatigue cracks are initiated almost always below the material surface of the loaded specimen. Thus, in the article, assuming that a crack will always initiate below the surface, we analyzed the fatigue behavior of specimens with the same bearing cross section but with a different number of bearing rods. With a larger number of rods, the circumference around the supporting part of the rods was 1.73 times larger. Thus, experimental fatigue of specimens with different sizes showed that the dynamic loading capacity of components with a smaller number of bars is significantly greater and can be monitored by individual stress levels. Although there are no significant differences in loading capacity under static and low-cycle loading of materials manufactured with additive technologies, in high-cycle fatigue it has been shown that the ratio between the circumference and the loading cross section of tensile-loaded rods plays an important role in the lifetime. This finding is important for setting a strategy for manufacturing components with additive technologies. It shows that a better dynamic loading capacity can be obtained with a larger loading cross section.
Ključne besede: AISI 316L stainless steel, additive manufacturing, FEM, high-cycle fatigue, fractography analysis
Objavljeno v DKUM: 25.11.2024; Ogledov: 0; Prenosov: 17
.pdf Celotno besedilo (33,45 MB)
Gradivo ima več datotek! Več...

2.
LCF behaviour of high strength aluminium alloys AA 6110A and AA 6086
Jernej Klemenc, Srečko Glodež, Matej Steinacher, Franc Zupanič, 2023, izvirni znanstveni članek

Opis: The proposed research presents the comprehensive investigation of the Low Cycle Fatigue (LCF) behaviour of two high-strength aluminium alloys of series AA 6xxx: the conventional alloy AA 6110A and the newly developed alloy AA 6086. Both alloys were characterised in the as-cast condition after homogenisation, extrusion, and T6 heat treatment. The quasi-static strength and hardness of the aluminium alloy AA 6086 were found to be significantly higher if compared to the AA 6110A alloys, while the ductility was a little bit smaller. The LCF tests showed that the AA 6086 alloy is more suitable for the high-cycle fatigue regime. On the other hand, the engineering advantage of the AA 6110A alloy is only for low-cycle fatigue applications if less than 100 loading cycles are expected in the service life of the analysed structure. The fatigue cracks formed predominantly on the α-AlMnSi intermetallic particles in both alloys, and, during LCF tests, exhibited small crack propagation. The area of the fatigue crack growth was much smaller than the area of the forced fracture. At smaller amplitude strains the fatigue striations were present at the fracture surface, while, at higher amplitude strains, they were not present. The obtained experimental results represent a good basis for engineering design applications of the analysed alloys AA 6086 and AA 6110A.
Ključne besede: aluminijeve zlitine, malociklično utrujanje, eksperimentalno testiranje, fraktografija, aluminium alloys, low cycle fatigue, experimental testing, fractography
Objavljeno v DKUM: 29.03.2024; Ogledov: 197; Prenosov: 16
URL Povezava na celotno besedilo
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.06 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici