1. Investigating the viability of epithelial cells on polymer based thin-filmsBoštjan Vihar, Jan Rožanc, Boštjan Krajnc, Lidija Gradišnik, Marko Milojević, Laura Činč Ćurić, Uroš Maver, 2021, izvirni znanstveni članek Opis: The development of novel polymer-based materials opens up possibilities for several novel applications, such as advanced wound dressings, bioinks for 3D biofabrication, drug delivery systems, etc. The aim of this study was to evaluate the viability of vascular and intestinal epithelial cells on different polymers as a selection procedure for more advanced cell-polymer applications. In addition, possible correlations between increased cell viability and material properties were investigated. Twelve polymers were selected, and thin films were prepared by dissolution and spin coating on silicon wafers. The prepared thin films were structurally characterized by Fourier transform infrared spectroscopy, atomic force microscopy, and goniometry. Their biocompatibility was determined using two epithelial cell lines (human umbilical vein endothelial cells and human intestinal epithelial cells), assessing the metabolic activity, cell density, and morphology. The tested cell lines showed different preferences regarding the culture substrate. No clear correlation was found between viability and individual substrate characteristics, suggesting that complex synergistic effects may play an important role in substrate design. These results show that a systematic approach is required to compare the biocompatibility of simple cell culture substrates as well as more complex applications (e.g., bioinks). Ključne besede: HUIEC, HUVEC, morphology, polymers, thin films, viability Objavljeno v DKUM: 18.10.2024; Ogledov: 0; Prenosov: 1 Celotno besedilo (20,37 MB) Gradivo ima več datotek! Več... |
2. Films based on TEMPO-oxidized chitosan nanoparticles: Obtaining and potential application as wound dressingsMatea Korica, Katarina Mihajlovski, Tamilselvan Mohan, Mirjana M. Kostić, 2024, izvirni znanstveni članek Opis: A series of novel films based on TEMPO-oxidized chitosan nanoparticles were prepared by casting method.
Fourier transform infrared spectroscopy (FTIR) was employed to ascertain the chemical structure of TEMPOoxidized chitosan. The surface morphology of the TEMPO-oxidized chitosan nanoparticles was analyzed by
atomic force microscopy (AFM). The physicochemical (area density, thickness, iodine sorption, roughness),
functional (moisture sorption, liquid absorption capacity, weight loss upon contact with the liquid, and water
vapor transmission rate), antibacterial, and antioxidant properties of films based on TEMPO-oxidized chitosan
nanoparticles were also investigated. The physicochemical properties of the films varied widely: area density
ranged from 77.83 ± 0.06 to184.46 ± 0.05 mg/cm2
, thickness varied between 80.5 ± 1.6 and 200.5 ± 1.6 μm,
iodine sorption spanned from 333.7 ± 2.1 to166.4 ± 2.2 mg I2/g, and roughness ranged from 4.1 ± 0.2 to 5.6 ±
0.3 nm. Similarly, the functional properties also varied significantly: moisture sorption ranged from 4.76 ± 0.03
to 9.62 ± 0.11 %, liquid absorption capacity was between 129.04 ± 0.24 and 159.33 ± 0.73 % after 24 h, weight
loss upon contact with the liquid varied between 31.06 ± 0.35 and 45.88 ± 0.58 % after 24 h and water vapor
transmission rate ranged from 1220.10 ± 2.91to1407.77 ± 5.22 g/m2 day. Despite the wide variations in
physicochemical and functional properties, all films showed maximum bacterial reduction of Staphylococcus
aureus and Escherichia coli, although they exhibited low antioxidant activity. The results suggest that the films
could be effectively utilized as antibacterial wound dressings. Ključne besede: TEMPO-oxidized chitosan nanoparticles, films, antibacterial activity, wound dressings Objavljeno v DKUM: 11.09.2024; Ogledov: 56; Prenosov: 25 Celotno besedilo (4,92 MB) Gradivo ima več datotek! Več... |
3. Novel methacrylate-based multilayer nanofilms with incorporated FePt-based nanoparticles and the anticancer drug 5-fluorouracil for skin cancer treatmentKristijan Skok, Tanja Zidarič, Kristjan Orthaber, Matevž Pristovnik, Nina Kostevšek, Kristina Žužek Rožman, Sašo Šturm, Lidija Gradišnik, Uroš Maver, Tina Maver, 2022, izvirni znanstveni članek Opis: Despite medical advances, skin-associated disorders continue to pose a unique challenge to physicians worldwide. Skin cancer is one of the most common forms of cancer, with more than one million new cases reported each year. Currently, surgical excision is its primary treatment; however, this can be impractical or even contradictory in certain situations. An interesting potential alternative could lie in topical treatment solutions. The goal of our study was to develop novel multilayer nanofilms consisting of a combination of polyhydroxyethyl methacrylate (PHEMA), polyhydroxypropyl methacrylate (PHPMA), sodium deoxycholate (NaDOC) with incorporated superparamagnetic iron–platinum nanoparticles (FePt NPs), and the potent anticancer drug (5-fluorouracil), for theranostic skin cancer treatment. All multilayer systems were prepared by spin-coating and characterised by atomic force microscopy, infrared spectroscopy, and contact angle measurement. The magnetic properties of the incorporated FePt NPs were evaluated using magnetisation measurement, while their size was determined using transmission electron microscopy (TEM). Drug release performance was tested in vitro, and formulation safety was evaluated on human-skin-derived fibroblasts. Finally, the efficacy for skin cancer treatment was tested on our own basal-cell carcinoma cell line. Ključne besede: nanomaterials, bimodal therapy, topical skin treatmen, magnetic nanoparticles, thin films, skin cancer, methacrylates Objavljeno v DKUM: 04.07.2024; Ogledov: 98; Prenosov: 16 Celotno besedilo (5,33 MB) Gradivo ima več datotek! Več... |
4. Optical characteristics of directly deposited gold nanoparticle filmsJordi Sancho-Parramon, Tilen Švarc, Peter Majerič, Žiga Jelen, Rebeka Rudolf, 2024, izvirni znanstveni članek Opis: The manuscript presents the optical properties of directly deposited films of gold nanoparticles (AuNPs) prepared by the Ultrasonic Spray Pyrolysis (USP) technology. Four samples were produced, with AuNP deposition times on the glass substrate of 15 min, 30 min, 1 h and 4 h. The morphological characterisation of the deposited films showed that the size of the first deposited AuNPs was between 10 and 30 nm, while, with a longer duration of the deposition process, larger clusters of AuNPs grew by coalescence and aggregation. The prepared layers were characterised optically with Ultraviolet–visible spectroscopy (UV–vis) and ellipsometry. The ellipsometric measurements showed an increasingly denser and thicker effective thickness of the AuNP layers. The extinction spectra displayed a clear local surface plasmonic resonance (LSPR) signature (peak 520–540 nm), indicating the presence of isolated particles in all the samples. For all AuNP layers, the imaginary part of the parallel and perpendicular components of the anisotropic dielectric function was dominated by a central peak at around 2.2 eV, corresponding to the LSPR of isolated particles, and a high-energy shoulder due to Au interband transitions. It was shown that, as the density of particles increased, the extinction cross-section grew over the whole spectral range where measurements are taken. Thus, the response can be explained with an enhanced electromagnetic response between the AuNPs that can be connected to the increase in particle density, but also by the formation of clusters and irregular structures. Ključne besede: optical characteristics, gold nanoparticles’ films, UV–vis, ellipsometry measurements Objavljeno v DKUM: 28.05.2024; Ogledov: 124; Prenosov: 0 |
5. Cellulose–chitosan functional biocompositesSimona Strnad, Lidija Fras Zemljič, 2023, pregledni znanstveni članek Opis: Here, we present a detailed review of recent research and achievements in the field of combining two extremely important polysaccharides; namely, cellulose and chitosan. The most important properties of the two polysaccharides are outlined, giving rise to the interest in their combination. We present various structures and forms of composite materials that have been developed recently. Thus, aerogels, hydrogels, films, foams, membranes, fibres, and nanofibres are discussed, alongside the main techniques for their fabrication, such as coextrusion, co-casting, electrospinning, coating, and adsorption. It is shown that the combination of bacterial cellulose with chitosan has recently gained increasing attention. This is particularly attractive, because both are representative of a biopolymer that is biodegradable and friendly to humans and the environment. The rising standard of living and growing environmental awareness are the driving forces for the development of these materials. In this review, we have shown that the field of combining these two extraordinary polysaccharides is an inexhaustible source of ideas and opportunities for the development of advanced functional materials. Ključne besede: biocomposites, functional materials, cellulose–chitosan, fibers, films, hydrogels, nanofibers Objavljeno v DKUM: 19.02.2024; Ogledov: 293; Prenosov: 27 Celotno besedilo (6,52 MB) Gradivo ima več datotek! Več... |
6. Pullulan-based films impregnated with silver nanoparticles from the Fusarium culmorum strain JTW1 for potential applications in the food industry and medicineMagdalena Wypij, Mahendra Rai, Lidija Fras Zemljič, Matej Bračič, Silvo Hribernik, Patrycja Golińska, 2023, izvirni znanstveni članek Opis: Introduction: Biopolymers, such as pullulan, a natural exopolysaccharide from Aureobasidium pullulans, and their nanocomposites are commonly used in the food, pharmaceutical, and medical industries due to their unique physical and chemical properties.
Methods: Pullulan was synthesized by the A. pullulans ATCC 201253 strain. Nanocomposite films based on biosynthesized pullulan were prepared and loaded with different concentrations of silver nanoparticles (AgNPs) synthesized by the Fusarium culmorum strain JTW1. AgNPs were characterized by transmission electron microscopy, Zeta potential measurements, and Fourier-transform infrared spectroscopy. In turn, the produced films were subjected to physico-chemical analyses such as goniometry, UV shielding capacity, attenuated total reflection–Fourier-transform infrared spectroscopy, scanning electron microscopy, and X-ray photoelectron spectroscopy, and their mechanical and degradation properties were assessed. The antibacterial assays of the nanoparticles and the nanocomposite films against both food-borne and reference pathogens, including Listeria monocytogenes, Salmonella infantis, Salmonella enterica, Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Klebsiella pneumoniae, were performed using standard methods.
Results: AgNPs were small (mean 15.1 nm), spherical, and displayed good stability, being coated with protein biomolecules. When used in higher concentrations as an additive to pullulan films, they resulted in reduced hydrophilicity and light transmission for both UV-B and UV-A lights. Moreover, the produced films exhibited a smooth surface. Therefore, it can be concluded that the addition of biogenic AgNPs did not change the morphology and texture of the films compared to the control film. The nanoparticles and nanocomposite films demonstrated remarkable antibacterial activity against both food-borne and reference bacteria. The highest activity of the prepared films was observed against L. monocytogenes.
Discussion: The obtained results suggest that the novel nanocomposite films prepared from biosynthesized pullulan and AgNPs can be considered for use in the development of medical products and food packaging. Moreover, this is the first report on pullulan-based nanocomposites with mycogenic AgNPs for such applications. Ključne besede: Aureobasidium pullulans, pullulan, nanocomposite films, silver nanoparticles, mycosynthesis, nanobiotechnology, applied microbiology, antibacterial activity Objavljeno v DKUM: 08.09.2023; Ogledov: 469; Prenosov: 33 Celotno besedilo (4,23 MB) Gradivo ima več datotek! Več... |
7. Seasonal changes in chemical profile and antioxidant activity of Padina pavonica extracts and their application in the development of bioactive chitosan/PLA bilayer filmMartina Čagalj, Lidija Fras Zemljič, Tjaša Kraševac Glaser, Eva Mežnar, Meta Sterniša, Sonja Smole Možina, María del Carmen Razola-Díaz, Vida Šimat, 2022, izvirni znanstveni članek Opis: Seaweeds are a potentially sustainable source of natural antioxidants that can be used in the food industry and possibly for the development of new sustainable packaging materials with the ability to extend the shelf-life of foods and reduce oxidation. With this in mind, the seasonal variations in the chemical composition and antioxidant activity of brown seaweed (Padina pavonica) extracts were investigated. The highest total phenolic content (TPC) and antioxidant activity (measured by ferric reducing/antioxidant power (FRAP), 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, and oxygen radical absorbance capacity (ORAC)) were found for P. pavonica June extract. The TPC of 26.69 ± 1.86 mg gallic acid equivalent/g, FRAP of 352.82 ± 15.41 µmole Trolox equivalent (TE)/L, DPPH of 52.51 ± 2.81% inhibition, and ORAC of 76.45 ± 1.47 µmole TE/L were detected. Therefore, this extract was chosen for the development of bioactive PLA bilayer film, along with chitosan. Primary or quaternary chitosan was used as the first layer on polylactic acid (PLA) films. A suspension of chitosan particles with entrapped P. pavonica extract was used as the second layer. X-ray photoelectron spectroscopy confirmed the presence of layers on the material surface. The highest recorded antioxidant activity of the newly developed films was 63.82% inhibition. The developed functional films exhibited antifogging and antioxidant properties, showing the potential for application in the food industry. Ključne besede: functional PLA films, seaweed and chitosan bilayer, sustainable natural antioxidants, microwave-assisted extraction Objavljeno v DKUM: 23.08.2023; Ogledov: 430; Prenosov: 29 Celotno besedilo (3,28 MB) Gradivo ima več datotek! Več... |
8. Using different surface energy models to assess the interactions between antiviral coating films and phi6 model virusZdenka Peršin Fratnik, Olivija Plohl, Vanja Kokol, Lidija Fras Zemljič, 2023, izvirni znanstveni članek Opis: High molecular weight chitosan (HMWCh), quaternised cellulose nanofibrils (qCNF), and their mixture showed antiviral potential in liquid phase, while this effect decreased when applied to facial masks, as studied in our recent work. To gain more insight into material antiviral activity, spin-coated thin films were prepared from each suspension (HMWCh, qCNF) and their mixture with a 1:1 ratio. To understand their mechanism of action, the interactions between these model films with various polar and nonpolar liquids and bacteriophage phi6 (in liquid phase) as a viral surrogate were studied. Surface free energy (SFE) estimates were used as a tool to evaluate the potential adhesion of different polar liquid phases to these films by contact angle measurements (CA) using the sessile drop method. The Fowkes, Owens–Wendt–Rabel–Kealble (OWRK), Wu, and van Oss–Chaudhury–Good (vOGC) mathematical models were used to estimate surface free energy and its polar and dispersive contributions, as well as the Lewis acid and Lewis base contributions. In addition, the surface tension SFT of liquids was also determined. The adhesion and cohesion forces in wetting processes were also observed. The estimated SFE of spin-coated films varied between mathematical models (26–31 mJ/m2) depending on the polarity of the solvents tested, but the correlation between models clearly indicated a significant dominance of the dispersion components that hinder wettability. The poor wettability was also supported by the fact that the cohesive forces in the liquid phase were stronger than the adhesion to the contact surface. In addition, the dispersive (hydrophobic) component dominated in the phi6 dispersion, and since this was also the case in the spin-coated films, it can be assumed that weak physical van der Waals forces (dispersion forces) and hydrophobic interactions occurred between phi6 and the polysaccharide films, resulting in the virus not being in sufficient contact with the tested material during antiviral testing of the material to be inactivated by the active coatings of the polysaccharides used. Regarding the contact killing mechanism, this is a disadvantage that can be overcome by changing the previous material surface (activation). In this way, HMWCh, qCNF, and their mixture can attach to the material surface with better adhesion, thickness, and different shape and orientation, resulting in a more dominant polar fraction of SFE and thus enabling the interactions within the polar part of phi6 dispersion. Ključne besede: films, surface free energy, SFE mathematical models, phi6, wettability, spreading, interactions Objavljeno v DKUM: 21.04.2023; Ogledov: 555; Prenosov: 36 Celotno besedilo (3,21 MB) |
9. Design, Characterisation and Applications of Cellulose-Based Thin Films, Nanofibers and 3D Printed Structures : A Laboratory ManualTanja Pivec, Tamilselvan Mohan, Rupert Kargl, Manja Kurečič, Karin Stana-Kleinschek, 2021, drugo učno gradivo Opis: The introduction of the Laboratory Manual gives the theoretical bases on cellulose and its derivatives, which are used as starting polymers for the preparation of multifunctional polymers with three different advanced techniques - spin coating, electrospinning and 3D printing. In the following, each technique is presented in a separate Lab Exercise. Each exercise covers the theoretical basics on techniques for polymer processing and methods for their characterisation, with an emphasis on the application of prepared materials. The experimental sections contain all the necessary information needed to implement the exercises, while the added results provide students with the help to implement correct and successful exercises and interpret the results. Ključne besede: multifunctional polymers, polysaccharides, cellulose, electrospun, spin coating, 3D printing, nanofibers, thin films, multifunctional materials, laboratory manuals Objavljeno v DKUM: 09.03.2021; Ogledov: 965; Prenosov: 24 Povezava na datoteko |
10. EXAFS and IR analysis of electrochromic $NiO_x$/$NiO_xH_y$ thin filmsJana Padežnik Gomilšek, Romana Cerc Korošec, Peter Bukovec, Alojz Kodre, 2008, izvirni znanstveni članek Opis: Electrochromic (EC) thin films of $NiO_x$ and $NiO_xH_y$ are prepared by sol-gel method from nickel chloride precursor and deposited onto a suitable substrate by dip-coating technique. The development of the structure with thermal treatment is investigated by EXAFS and IR spectroscopy in two series of films, with high and low concentration of chloride as counter ions. In the former, the predominant structure before thermal treatment is nickel hydroxide. The baking induces condensation, yet with no trace of NiO. In the latter group, colloidal particles are indicated, on which acetate groups are adsorbed or coordinated. At the maximum EC-response the formation of NiO grains is established by EXAFS and IR. Ključne besede: electrochromism, thin films, nickel oxide, nickel hydroxide, EXAFS Objavljeno v DKUM: 18.08.2017; Ogledov: 1423; Prenosov: 105 Celotno besedilo (286,00 KB) Gradivo ima več datotek! Več... |