| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 3 / 3
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Fluid flow simulation with an ▫$ℋ^2$▫ -accelerated boundary-domain integral method
Jan Tibaut, Jure Ravnik, M Schanz, 2024, izvirni znanstveni članek

Opis: The development of new numerical methods for fluid flow simulations is challenging but such tools may help to understand flow problems better. Here, the Boundary-Domain Integral Method is applied to simulate laminar fluid flow governed by a dimensionless velocity–vorticity formulation of the Navier–Stokes equation. The Reynolds number is chosen in all examples small enough to ensure laminar flow conditions. The false transient approach is utilized to improve stability. As all boundary element methods, the Boundary-Domain Integral Method has a quadratic complexity. Here, the ℋ2 -methodology is applied to obtain an almost linear complexity. This acceleration technique is not only applied to the boundary only part but more important to the domain related part of the formulation. The application of the ℋ2 -methodology does not allow to use the rigid body method to determine the singular integrals and the integral free term as done until now. It is shown how to apply the technique of Guigiani and Gigante to handle the strongly singular integrals in this application. Further, a parametric study shows the influence of the introduced approximation parameters. For this purpose the example of a lid driven cavity is utilized. The second example demonstrates the performance of the proposed method by simulating the Hagen–Poiseuille flow in a pipe. The third example considers the flow around a rigid cylinder to show the behavior of the method for an unstructured grid. All examples show that the proposed method results in an almost linear complexity as the mathematical analysis promisses.
Ključne besede: boundary-domain integral method, velocity–vorticity, adaptive cross approximation, modified helmholtz equation, Yukawa potential, fast multipole method, ℋ-structure
Objavljeno v DKUM: 28.11.2024; Ogledov: 0; Prenosov: 13
.pdf Celotno besedilo (3,06 MB)
Gradivo ima več datotek! Več...

2.
Fast single domain-subdomain BEM algorithm for 3D incompressible fluid flow and heat transfer
Jure Ravnik, Leopold Škerget, Zoran Žunič, 2009, izvirni znanstveni članek

Opis: In this paper acceleration and computer memory reduction of an algorithm for the simulation of laminar viscous flows and heat transfer is presented. The algorithm solves the velocity-vorticity formulation of the incompressible Navier-Stokes equations in 3D. It is based on a combination of a subdomain boundary element method (BEM) and single domain BEM. The CPU time and storage requirements of the single domain BEM are reduced by implementing a fast multipole expansion method. The Laplace fundamental solution, which is used as a special weighting function in BEM, is expanded in terms of spherical harmonics. The computational domain and its boundary are recursively cut up forming a tree of clusters of boundary elements and domain cells. Data sparse representation is used in parts of the matrix, which correspond to boundary-domain clusters pairs that are admissible for expansion. Significant reduction of the complexity is achieved. The paper presents results of testing of the multipole expansion algorithm by exploring its effect on the accuracy of the solution and its influence on the non-linear convergence properties of the solver. Two 3D benchmark numerical examples are used: the lid-driven cavity and the onset of natural convection in a differentially heated enclosure.
Ključne besede: boundary element method, fast multipole method, fluid flow, heat transfer, velocity-vorticity fomulation
Objavljeno v DKUM: 31.05.2012; Ogledov: 2270; Prenosov: 103
URL Povezava na celotno besedilo

3.
Comparison between wavelet and fast multipole data sparse approximations for Poisson and kinematics boundary - domain integral equations
Jure Ravnik, Leopold Škerget, Zoran Žunič, 2009, izvirni znanstveni članek

Opis: The boundary element method applied on non-homogenous partial differential equations requires calculation of a fully populated matrix of domain integrals. This paper compares two techniques: the fast multipole method and the fast wavelet transform, which are used to reduce the complexity of such domain matrices. The employed fast multipole method utilizes the expansion of integral kernels into series of spherical harmonics. The wavelet transform for vectors of arbitrary length, based on Haar wavelets and variable thresholding limit, is used. Both methods are tested and compared by solving the scalar Poisson equation and the velocity-vorticity vector kinematics equation. The results show comparable accuracy for both methods for a given data storage size. Wavelets are somewhat better for high and low compression ratios, and the fast multipole methods gives better results for moderate compressions. Considering implementation of the methods, the wavelet transform can easily be adapted for any problem, while the fast multipole method requires different expansion for each integral kernel.
Ključne besede: wavelets, fast multipole method, Poisson equation, BEM
Objavljeno v DKUM: 31.05.2012; Ogledov: 2440; Prenosov: 109
URL Povezava na celotno besedilo

Iskanje izvedeno v 0.03 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici