1. Development of novel hybrid TPMS cellular lattices and their mechanical characterisationNejc Novak, Oraib Al-Ketan, Matej Borovinšek, Lovre Krstulović-Opara, Reza Rowshan, Matej Vesenjak, Zoran Ren, 2021, izvirni znanstveni članek Opis: Uniform lattices composed of one type of lattice structure repeated periodically have been extensively investigated in literature for their mechanical and physical properties. Their promising properties, which include a desirable combination of high strength, stiffness and toughness, suggest that hybrid structures made of two or more lattice types can exhibit even more advantageous and desired properties. In this work, the mechanical properties of hybrid cellular structures designed using implicit functions are investigated both experimentally and numerically. Two proposed samples are investigated comprised of a Gyroid and a Diamond unit cells hybridised linearly and radially. First, a finite element computational model was utilised in LS-DYNA to capture the mechanical properties of the additively manufactured constituent lattices (i.e., Gyroid and Diamond) made of stainless steel 316L and tested under dynamic and quasi-static loading conditions. The model was validated for three different relative densities. Then, the validated computational model was then tested to predict the mechanical behaviour of the proposed hybrid lattices. Finally, the proposed hybrid lattices were fabricated and mechanically tested to obtain their mechanical properties. A good agreement between experimental and computational results was achieved. The validated computational models will be used to evaluate other designs of TPMS lattices and their crashworthiness performance for protective equipment applications. Ključne besede: cellular materials, triply periodical minimal surface, hybrid lattices, experimental testing, computational modelling, multi-morphology Objavljeno v DKUM: 27.11.2024; Ogledov: 3; Prenosov: 4 Celotno besedilo (3,99 MB) Gradivo ima več datotek! Več... |
2. High strain rate hardening of metallic cellular metamaterialsNejc Novak, Matej Vesenjak, Zoran Ren, 2024, izvirni znanstveni članek Opis: Strain rate hardening caused by the changed deformation mode is a fascinating phenomenon in cellular metamaterials where the material’s stiffness and energy absorption capabilities increase as the strain rate increases. This unique behaviour is attributed to a combination of micro-inertia effects, base material’s strain rate hardening and inertia effects. At high strain rates, the metamaterial’s inertia influences its deformation response, which changes to shock mode. This work briefly presents the geometry and fabrication of different metallic metamaterials. Then, it evaluates their mechanical response at different strain rates, ranging from quasi-static to intermediate dynamic and shock, determined by experimental and computational investigation. The three deformation modes can be separated into two critical loading velocities, unique for each metamaterial, which are also presented and compared in this work for various metamaterials. The investigations show that the deformation mode change in metallic metamaterials depends on their porosity. The critical velocities separating the deformation modes decrease with increasing porosity, i.e., decreased density of the metamaterial results in reduced critical loading velocities. The shock deformation mode in cellular metamaterials is thus attainable at much lower loading velocities than in homogeneous (nonporous) materials. Ključne besede: metamaterials, cellular structures, high strain rate, experimental testing, computational modelling, compression loading, mechanical properties Objavljeno v DKUM: 22.05.2024; Ogledov: 204; Prenosov: 17 Celotno besedilo (3,42 MB) Gradivo ima več datotek! Več... |
3. Mechanical behaviour of photopolymer cell-size graded triply periodic minimal surface structures at different deformation ratesYunus Emre Yilmaz, Nejc Novak, Oraib Al-Ketan, Hacer Irem Erten, Ulas Yaman, Anja Mauko, Matej Borovinšek, Miran Ulbin, Matej Vesenjak, Zoran Ren, 2024, izvirni znanstveni članek Opis: This study investigates how varying cell size affects the mechanical behaviour of photopolymer Triply Periodic Minimal Surfaces (TPMS) under different deformation rates. Diamond, Gyroid, and Primitive TPMS structures with spatially graded cell sizes were tested. Quasi-static experiments measured boundary forces, representing material behaviour, inertia, and deformation mechanisms. Separate studies explored the base material’s behaviour and its response to strain rate, revealing a strength increase with rising strain rate. Ten compression tests identified a critical strain rate of 0.7 s−1 for “Grey Pro” material, indicating a shift in failure susceptibility. X-ray tomography, camera recording, and image correlation techniques observed cell connectivity and non-uniform deformation in TPMS structures. Regions exceeding the critical rate fractured earlier. In Primitive structures, stiffness differences caused collapse after densification of smaller cells at lower rates. The study found increasing collapse initiation stress, plateau stress, densification strain, and specific energy absorption with higher deformation rates below the critical rate for all TPMS structures. However, cell-size graded Primitive structures showed a significant reduction in plateau and specific energy absorption at a 500 mm/min rate. Ključne besede: cellular materials, triply periodical minimal surface, photopolymer, mechanical properties, strain rate, experimental compressive testing, computer simulations Objavljeno v DKUM: 22.05.2024; Ogledov: 216; Prenosov: 19 Celotno besedilo (9,33 MB) Gradivo ima več datotek! Več... |
4. |
5. Microstructure, mechanical properties and fatigue behaviour of a new high-strength aluminium alloy AA 6086Franc Zupanič, Jernej Klemenc, Matej Steinacher, Srečko Glodež, 2023, izvirni znanstveni članek Opis: This study presents the comprehensive experimental investigation of the microstructure, mechanical and fatigue properties of a new high-strength aluminium alloy AA 6086, which was developed from a commercial aluminium alloy AA 6082. The new alloy possesses a higher content of Si, and, it also contains Cu and Zr. The alloy was characterised in the as-cast condition after homogenisation, extrusion, and T6 heat treatment. Light microscopy, scanning and transmission electron microscopy with energy dispersive spectrometry were used to analyse the microstructure and the fractography of broken specimens. The quasi-static and fatigue tests were performed on the MTS Landmark 100 kN servo-hydraulic test machine, controlled with a mechanical extensometer with a 25 mm gauge length. The quasi-static strength of the analysed aluminium alloy AA 6086 was found to be significantly higher if compared to some other AA 6xxx alloys, while the ductility was kept almost the same. The experimental results of the comprehensive fatigue tests in a Low Cycle Fatigue (LCF) and High Cycle Fatigue (HCF) regime showed a good fatigue resistance, and represent a good basis for engineering design applications of the newly developed aluminium alloy AA 6086. Ključne besede: aluminijeve zlitine, karakterizacija materiala, utrujanje, eksperimentalno testiranje, statistično ovrednotenje, Aluminium Alloy AA 6086, material characterisation, fatigue behaviour, experimental testing, statistical evaluation Objavljeno v DKUM: 02.04.2024; Ogledov: 281; Prenosov: 22 Povezava na celotno besedilo Gradivo ima več datotek! Več... |
6. LCF behaviour of high strength aluminium alloys AA 6110A and AA 6086Jernej Klemenc, Srečko Glodež, Matej Steinacher, Franc Zupanič, 2023, izvirni znanstveni članek Opis: The proposed research presents the comprehensive investigation of the Low Cycle Fatigue (LCF) behaviour of two high-strength aluminium alloys of series AA 6xxx: the conventional alloy AA 6110A and the newly developed alloy AA 6086. Both alloys were characterised in the as-cast condition after homogenisation, extrusion, and T6 heat treatment.
The quasi-static strength and hardness of the aluminium alloy AA 6086 were found to be significantly higher if compared to the AA 6110A alloys, while the ductility was a little bit smaller. The LCF tests showed that the AA 6086 alloy is more suitable for the high-cycle fatigue regime. On the other hand, the engineering advantage of the AA 6110A alloy is only for low-cycle fatigue applications if less than 100 loading cycles are expected in the service life of the analysed structure. The fatigue cracks formed predominantly on the α-AlMnSi intermetallic particles in both alloys, and, during LCF tests, exhibited small crack propagation. The area of the fatigue crack growth was much smaller than the area of the forced fracture. At smaller amplitude strains the fatigue striations were present at the fracture surface, while, at higher amplitude strains, they were not present. The obtained experimental results represent a good basis for engineering design applications of the analysed alloys AA 6086 and AA 6110A. Ključne besede: aluminijeve zlitine, malociklično utrujanje, eksperimentalno testiranje, fraktografija, aluminium alloys, low cycle fatigue, experimental testing, fractography Objavljeno v DKUM: 29.03.2024; Ogledov: 197; Prenosov: 13 Povezava na celotno besedilo Gradivo ima več datotek! Več... |
7. Vibration fatigue analysis of two different variants of oil suction pipesMarko Zadravec, Srečko Glodež, Christian Buzzi, Peter Brunnhofer, Martin Leitner, Janez Kramberger, 2024, izvirni znanstveni članek Opis: In order to reduce the overall mass of the product, an improved variant of the engine oil suction pipe in hybrid design is developed and analysed as part of this paper. The vibration fatigue analysis of a simple all-metal suction pipe and the new hybrid suction pipe variant is derived using computer FEA simulations and vibration measurements on the shaker. The hybrid design of the technical components makes it possible to combine different types of materials in order to achieve the best possible properties and behaviours for the components under the influence of external loads. In our case, we combine a suction pipe made of S235JR mild steel with a 3D-printed polyamide intake funnel featuring a grid designed to prevent particles from entering the engine’s lubrication circuit. This design reduces the mass and shifts the centre of gravity closer to the attachment point of the pipe, as well as to the engine crankcase, which has a positive effect on the values of natural frequencies and vibration amplitudes. The main objective of such a hybrid suction pipe is precisely to reduce vibrations, and thus extend the service life of the components. Ključne besede: oil suction pipe, vibration fatigue, failure analyses, experimental testing, numerical simulations Objavljeno v DKUM: 26.02.2024; Ogledov: 641; Prenosov: 638 Celotno besedilo (6,90 MB) Gradivo ima več datotek! Več... |
8. Fatigue behaviour of brazed joints for heat exchangersBlaž Hanželič, Jernej Kralj, Tonica Bončina, Branko Nečemer, Janez Kramberger, Roman Satošek, Srečko Glodež, 2024, izvirni znanstveni članek Opis: The plate heat exchanger (PHE) is a component that provides heat to be transferred from hot water to domestic cold water without mixing them with high efficiency. Over the lifetime of the PHE, cyclic pressures act on the brazing points and the plates, and this may lead to fatigue failure. The fatigue behaviour of the PHE, designed using copper-brazed 316L stainless steel, was investigated in this study. First, the fatigue tests under the load ratio R = 0.1 were performed on the Vibrophore 100 testing machine to obtain the S-N curve of the analysed brazed joint. Based on the obtained experimental results, an appropriate material model of the analysed brazed joint has been created, which was validated with numerical calculation in the framework of a program code Ansys. A validated material model was then used for the subsequent numerical analysis of PHE. In order to carry out a numerical calculation using the finite element method (FEM), a three-dimensional model of the heat exchanger was created based on the previous scanning of PHE-geometry. Thereafter, the geometry was parameterised, which allowed us to perform parametric simulations (monitoring different responses depending on the input geometry). Numerical simulations were carried out in the framework of the Ansys 2023-R1 software, whereby the obtained results were analysed, and the responses were appropriately characterised according to previously determined load cases. Ključne besede: brazed joint, fatigue, experimental testing, computational analyses, heat exchanger Objavljeno v DKUM: 31.01.2024; Ogledov: 316; Prenosov: 58 Celotno besedilo (7,44 MB) Gradivo ima več datotek! Več... |
9. Development, fabrication and mechanical characterisation of auxetic bicycle handlebar gripNejc Novak, Vasja Plesec, Gregor Harih, Andrej Cupar, Jasmin Kaljun, Matej Vesenjak, 2023, izvirni znanstveni članek Opis: The auxetic cellular structures are one of the most promising metamaterials for vibration damping and crash absorption applications. Therefore, their use in the bicycle handlebar grip was studied in this work. A preliminary computational design study was performed using various auxetic and non-auxetic geometries under four load cases, which can typically appear. The most representative geometries were then selected and fabricated using additive manufacturing. These geometries were then experimentally tested to validate the discrete and homogenised computational models. The homogenised computational model was then used to analyse the biomechanical behaviour of the handlebar grip. It was observed that handle grip made from auxetic cellular metamaterials reduce the high contact pressures, provide similar stability and hereby improve the handlebar ergonomics. Ključne besede: auxetic cellular structures, computational simulations, experimental testing Objavljeno v DKUM: 23.05.2023; Ogledov: 413; Prenosov: 55 Celotno besedilo (2,63 MB) Gradivo ima več datotek! Več... |
10. Behavior of metallic foam under shock wave loadingMatej Vesenjak, Matej Borovinšek, Zoran Ren, Seiichi Irie, Shigeru Itoh, 2012, izvirni znanstveni članek Opis: In this manuscript, the behavior of metallic foam under impact loading and shock wave propagation has been observed. The goal of this research was to investigate the material and structural properties of submerged open-cell aluminum foam under impact loading conditions with particular interest in shock wave propagation and its effects on cellular material deformation. For this purpose experimental tests and dynamic computational simulations of aluminum foam specimens inside a water tank subjected to explosive charge have been performed. Comparison of the results shows a good correlation between the experimental and simulation results. Ključne besede: metal foam, shock wave loading, experimental testing, dynamic simulation Objavljeno v DKUM: 21.06.2017; Ogledov: 1524; Prenosov: 420 Celotno besedilo (839,46 KB) Gradivo ima več datotek! Več... |