| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 2 / 2
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Perfect codes in direct products of cycles - a complete characterization
Janez Žerovnik, 2008, izvirni znanstveni članek

Opis: Let ▫$G = times^n_{i=1}C_{ell_i}$▫ be a direct product of cycles. It is known that for any ▫$r le 1$▫, and any ▫$n le 2▫$, each connected component of ▫$G$▫ contains a so-called canonical ▫$r$▫-perfect code provided that each ▫$ell_i$▫ is a multiple of ▫$r^n + (r+1)^n$▫. Here we prove that up to a reasonably defined equivalence, these are the only perfect codes that exist.
Ključne besede: matematika, teorija grafov, korekcijske kode, direktni produkt grafov, popolne kode, cikli, mathematics, graph theory, error-correcting codes, direct product of graphs, perfect codes, cycles
Objavljeno v DKUM: 10.07.2015; Ogledov: 1886; Prenosov: 93
URL Povezava na celotno besedilo

2.
An almost complete description of perfect codes in direct products of cycles
Sandi Klavžar, Simon Špacapan, Janez Žerovnik, 2006, izvirni znanstveni članek

Opis: Let ▫$G = times_{i=1}^nC_{ell_i}$▫ be a direct product of cycles. It is proved that for any ▫$r ge 1$▫, and any ▫$n ge 2$▫, each connected component of ▫$G$▫ contains an ▫$r$▫-perfect code provided that each ▫$ell_i$▫ is a multiple of ▫$r^n + (r+1)^n▫$. On the other hand, if a code of ▫$G$▫ contains a given vertex and its canonical local vertices, then any ▫$ell_i$▫ is a multiple of ▫$r^n + (r+1)^n$▫. It is also proved that an ▫$r$▫-perfect code ▫$(r ge 2)$▫ of ▫$G$▫ is uniquely determined by ▫$n$▫ vertices, and it is conjectured that for ▫$r ge 2$▫ no other codes in ▫$G$▫ exist other than the constructed ones.
Ključne besede: mathematics, graph theory, error-correcting codes, direct product of graphs, perfect codes, cycles
Objavljeno v DKUM: 10.07.2015; Ogledov: 24186; Prenosov: 103
URL Povezava na celotno besedilo

Iskanje izvedeno v 0.03 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici