| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 2 / 2
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Perfect codes in direct products of cycles - a complete characterization
Janez Žerovnik, 2008, izvirni znanstveni članek

Opis: Let ▫$G = times^n_{i=1}C_{ell_i}$▫ be a direct product of cycles. It is known that for any ▫$r le 1$▫, and any ▫$n le 2▫$, each connected component of ▫$G$▫ contains a so-called canonical ▫$r$▫-perfect code provided that each ▫$ell_i$▫ is a multiple of ▫$r^n + (r+1)^n$▫. Here we prove that up to a reasonably defined equivalence, these are the only perfect codes that exist.
Ključne besede: matematika, teorija grafov, korekcijske kode, direktni produkt grafov, popolne kode, cikli, mathematics, graph theory, error-correcting codes, direct product of graphs, perfect codes, cycles
Objavljeno v DKUM: 10.07.2015; Ogledov: 1886; Prenosov: 92
URL Povezava na celotno besedilo

2.
An almost complete description of perfect codes in direct products of cycles
Sandi Klavžar, Simon Špacapan, Janez Žerovnik, 2006, izvirni znanstveni članek

Opis: Naj bo ▫$G = times_{i=1}^nC_{ell_i}$▫ direktni produkt ciklov. Dokazano je, da za vsak ▫$r ge 1$▫ in za vsak ▫$n ge 2$▫ velja naslednje. Če je vsak ▫$ell_i$▫ večkratnik od ▫$r^n + (r+1)^n$▫, tedaj vsaka povezana komponenta grafa ▫$G$▫ vsebuje ▫$r$▫-popolno kodo. Po drugi strani je tudi dokazano, da če koda grafa ▫$G$▫ vsebuje izbrano točko in njene lokalno kanonične točke, tedaj je vsak ▫$ell_i$▫ večkratnik od ▫$r^n + (r+1)^n$▫. Nadalje je dokazano, da je ▫$r$▫-popolna koda ▫$(r ge 2)$▫ grafa ▫$G$▫ enolično določena z ▫$n$▫ točkami. Postavljena je domneva, da za ▫$r ge 2$▫ ne obstajajo nobene druge kode v $G$ razen tistih, ki so konstruirane v članku.
Ključne besede: matematika, teorija grafov, korekcijske kode, direktni produkt grafov, popolne kode, cikli, mathematics, graph theory, error-correcting codes, direct product of graphs, perfect codes, cycles
Objavljeno v DKUM: 10.07.2015; Ogledov: 24186; Prenosov: 101
URL Povezava na celotno besedilo

Iskanje izvedeno v 0.06 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici