| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 1 / 1
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Methods and models for electric load forecasting : a comprehensive review
Mahmoud A. Hammad, Borut Jereb, Bojan Rosi, Dejan Dragan, 2020, izvirni znanstveni članek

Opis: Electric load forecasting (ELF) is a vital process in the planning of the electricity industry and plays a crucial role in electric capacity scheduling and power systems management and, therefore, it has attracted increasing academic interest. Hence, the accuracy of electric load forecasting has great importance for energy generating capacity scheduling and power system management. This paper presents a review of forecasting methods and models for electricity load. About 45 academic papers have been used for the comparison based on specified criteria such as time frame, inputs, outputs, the scale of the project, and value. The review reveals that despite the relative simplicity of all reviewed models, the regression analysis is still widely used and efficient for long-term forecasting. As for short-term predictions, machine learning or artificial intelligence-based models such as Artificial Neural Networks (ANN), Support Vector Machines (SVM), and Fuzzy logic are favored.
Ključne besede: methods, models, electric load forecasting, modeling electricity loads, electricity industry, power management, logistics
Objavljeno v DKUM: 22.08.2024; Ogledov: 95; Prenosov: 8
.pdf Celotno besedilo (1,23 MB)
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.04 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici