| | SLO | ENG | Piškotki in zasebnost

Večja pisava | Manjša pisava

Iskanje po katalogu digitalne knjižnice Pomoč

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 8 / 8
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Monitoring surface state of AA7075-T6 during dynamic loading with FBG sensor
Marijana Milković, Matej Njegovec, Jožef Predan, Jure Javornik, Denis Đonlagić, Nenad Gubeljak, 2023, izvirni znanstveni članek

Opis: The AA7075-T6 material is widely used in aerospace applications due to its favourable strength-to-weight ratio and cost-effectiveness. The material undergoes a process of cold rolling and subsequent stretching to form metal sheets. This process generates residual compressive stresses on the surface of the material. Surface changes in the material are observed at low stress levels, resulting in variations in residual stresses and surface roughness. This article presents an approach to monitor the surface state changes of AA7075-T6 material during dynamic loading using Fiber Bragg Grating (FBG) sensor. Numerical Finite Element Method (FEM) simulations analyse the transfer of deformations from the damaged surface through the adhesive layer to FBG with different cladding thicknesses. Loading induces microcrack-related intensity changes in the FBG optical spectrum and deformation response. The magnitude of the response is greater, when the cladding thickness of the optical fibre is thinner. Experimental results show that the FBG optical spectrum response varies with cumulative number of dynamic cycles.
Ključne besede: AA7075-T6, dynamic loading, Fiber Bragg Grating (FBG) sensor, surface condition
Objavljeno v DKUM: 10.03.2025; Ogledov: 0; Prenosov: 6
.pdf Celotno besedilo (1,20 MB)
Gradivo ima več datotek! Več...

2.
Mathematical modeling of the floating sleeper phenomenon supported by field measurements : Mojmir Uranjek, Denis Imamović and Iztok Peruš
Mojmir Uranjek, Denis Imamović, Iztok Peruš, 2024, izvirni znanstveni članek

Opis: This article aims to provide an accurate mathematical model with the minimum number of degrees of freedom for describing the floating sleeper phenomenon. This was accomplished using mathematical modeling supported by extensive field measurements of the railway track. Although the observed phenomenon is very complex, the simplified single degree of freedom (SDOF) mathematical model proved accurate enough for its characterization. The progression of the deterioration of the railway track was successfully correlated to changes in the maximal dynamic factor for different types of pulse loading. The results of the presented study might enable the enhanced construction and maintenance of railroads, particularly in karst areas.
Ključne besede: floating sleepers, dynamic factor, pulse loading, field measurements, SDOF mathematical model
Objavljeno v DKUM: 28.11.2024; Ogledov: 0; Prenosov: 14
.pdf Celotno besedilo (6,27 MB)
Gradivo ima več datotek! Več...

3.
Numerical study of the dynamic active lateral earth pressure coefficient of cohesive soils
Mehrab Jesmani, Hossein Alirezanejad, Hamed Faghihi Kashani, Mehrad Kamalzare, 2017, izvirni znanstveni članek

Opis: Retaining walls are proposed in many projects, such as bridges, coastal structures, road constructions and wherever lateral support is required for the vertical surface of an excavation. The active lateral pressure coefficient of soil, Ka , is an important parameter for studying the static and dynamic behaviors of these retaining walls. Many studies have evaluated this coefficient in static situations, but in most previous dynamic studies, researchers have worked on the behavior of cohesionless backfill soil or made simplifying assumptions (e.g., pseudo-static status) for cohesive soils as backfill soil. In this study, the size of the active lateral earth pressure coefficient (Ka) was studied in a full dynamic situation (Kae). A retaining wall with cohesive backfill soil is evaluated using the finite-difference method (FDM) and the effects of important soil and loading properties are assessed. The model is based on Mohr-Coulomb failure criteria under seismic loading. The results show that the value of Kae at the top of the wall, where it is highly sensitive to any variation in the soil and loading properties, is greater than one due to the high pressure value induced by the horizontal dynamic acceleration and the presence of tension cracks.
Ključne besede: dynamic active lateral earth pressure coefficient (Kae), cohesive backfill soil, finite difference method (FDM), tension cracks, retaining wall, seismic loading
Objavljeno v DKUM: 18.06.2018; Ogledov: 1549; Prenosov: 118
.pdf Celotno besedilo (3,26 MB)
Gradivo ima več datotek! Več...

4.
Prediction of the pile behaviour under dynamic loading using embedded strain sensor technology
Andrej Štrukelj, Mirko Pšunder, Helena Vrecl-Kojc, Ludvik Trauner, 2009, izvirni znanstveni članek

Opis: A standard dynamic loading test of the pile was performed on the highway section Slivnica - Hajdina near Maribor, Slovenia. Parallel to standard testing procedures the new monitoring technology based on specially developed strain sensors installed inside the pile body along the pile axis was introduced. On the basis of the measured results the normal strains along the pile axis were measured. Taking into consideration the elastic modulus of the concrete the normal stresses in the axial direction of the pile were also calculated and afterwards the shear stresses along the pile shaft have been estimated as well as the normal stresses below the pile toe. The estimation was made by considering a constant value for the pile diameter. The measured results were also compared with the computer simulation of the pile and the soil behaviour during all the successive test phases. The strain measurements inside the pile body during the standard dynamic loading test in present case did not have the purpose of developing an alternative method of pile loading tests. The presented monitoring technology proved itself as a very accurate and consistent. It gave in the first place the possibility of a closer look at the strains and stresses of the most unapproachable parts of different types of concrete structure elements especially piles and other types of deep foundations.
Ključne besede: piles, deep foundations, dynamic loading test, strain measurement technologies, elasto-plastic modelling, finite-element method
Objavljeno v DKUM: 06.06.2018; Ogledov: 1395; Prenosov: 177
.pdf Celotno besedilo (780,04 KB)
Gradivo ima več datotek! Več...

5.
Behavior of metallic foam under shock wave loading
Matej Vesenjak, Matej Borovinšek, Zoran Ren, Seiichi Irie, Shigeru Itoh, 2012, izvirni znanstveni članek

Opis: In this manuscript, the behavior of metallic foam under impact loading and shock wave propagation has been observed. The goal of this research was to investigate the material and structural properties of submerged open-cell aluminum foam under impact loading conditions with particular interest in shock wave propagation and its effects on cellular material deformation. For this purpose experimental tests and dynamic computational simulations of aluminum foam specimens inside a water tank subjected to explosive charge have been performed. Comparison of the results shows a good correlation between the experimental and simulation results.
Ključne besede: metal foam, shock wave loading, experimental testing, dynamic simulation
Objavljeno v DKUM: 21.06.2017; Ogledov: 1524; Prenosov: 421
.pdf Celotno besedilo (839,46 KB)
Gradivo ima več datotek! Več...

6.
Experimental and numerical evaluation of the mechanical behavior of strongly anisotropic light-weight metallic fiber structures under static and dynamic compressive loading
Olaf Andersen, Matej Vesenjak, Thomas Fiedler, Jehring, Lovre Krstulović-Opara, izvirni znanstveni članek

Opis: Rigid metallic fiber structures made from a variety of different metals and alloys have been investigated mainly with regard to their functional properties such as heat transfer, pressure drop, or filtration characteristics. With the recent advent of aluminum and magnesium-based fiber structures, the application of such structures in light-weight crash absorbers has become conceivable. The present paper therefore elucidates the mechanical behavior of rigid sintered fiber structures under quasi-static and dynamic loading. Special attention is paid to the strongly anisotropic properties observed for different directions of loading in relation to the main fiber orientation. Basically, the structures show an orthotropic behavior; however, a finite thickness of the fiber slabs results in moderate deviations from a purely orthotropic behavior. The morphology of the tested specimens is examined by computed tomography, and experimental results for different directions of loading as well as different relative densities are presented. Numerical calculations were carried out using real structural data derived from the computed tomography data. Depending on the direction of loading, the fiber structures show a distinctively different deformation behavior both experimentally and numerically. Based on these results, the prevalent modes of deformation are discussed and a first comparison with an established polymer foam and an assessment of the applicability of aluminum fiber structures in crash protection devices is attempted.
Ključne besede: aluminum fiber, fiber structure, orthotropy, sintering, compression, static loading, dynamic loading, energy absorption, numerical simulation
Objavljeno v DKUM: 21.06.2017; Ogledov: 1148; Prenosov: 575
.pdf Celotno besedilo (23,30 MB)
Gradivo ima več datotek! Več...

7.
Evaluation of thermal and mechanical filler gas influence on honeycomb structures behaviour
Matej Vesenjak, Andreas Öchsner, Zoran Ren, 2007, izvirni znanstveni članek

Opis: In this paper the behavior of hexagonal honeycombs under dynamic in-plane loading is described. Additionally, the presence and influence of the filler gas inside the honeycomb cells is considered. Such structures are subjected to very large deformation during an impact, where the filler gas might strongly affect their behavior and the capability of deformational energy absorption, especially at very low relative densities. The purpose of this research was therefore to evaluate the influence of filler gas on the macroscopic cellular structure behavior under dynamic uniaxial loading conditions by means of computational simulations. The LS-DYNA code has been used for this purpose, where a fully coupled interaction between the honeycomb structure and the filler gas was simulated. Different relative densities, initial pore pressures and strain rates have been considered. The computational results clearly show the influence of the filler gas on the macroscopic behavior of analyzed honeycomb structures. Because of very large deformation of the cellular structure, the gas inside the cells is also enormously compressed which results in very high gas temperatures and contributes to increased crash energy absorption capability. The evaluated results are valuable for further research considering also the heat transfer in honeycomb structures and for investigations of variation of the base material mechanical properties due to increased gas temperatures under impact loading conditions.
Ključne besede: mechanics, cellular materials, honeycomb structure, gas filler, thermal properties, mechanical properties, dynamic loading, LS-DYNA, computational simulations
Objavljeno v DKUM: 31.05.2012; Ogledov: 2094; Prenosov: 73
URL Povezava na celotno besedilo

8.
Thermal post-impact behaviour of closed-cell cellular structures with fillers
Matej Vesenjak, Andreas Öchsner, Zoran Ren, 2007, izvirni znanstveni članek

Opis: The study describes the behavior of regular closed-cell cellular structure with gaseous fillers under impact conditions and consequent post-impact thermal conduction due to the compression of filler gas. Two dependent but different analyses types have been carried out for this purpose: (i) a strongly coupled fluid-structure interaction and (ii) a weakly coupled thermal- structural analysis. This paper describes the structural analyses of the closed-cell cellular structure under impact loading. The explicit code LS-DYNA was used to computationally determine the behavior of cellular structure under compressive dynamic loading, where one unit volume element of the cellular structure has been discretised with finite elements considering a simultaneous strongly coupled interaction with the gaseous pore filler. Closed-cell cellular structures with different relative densities and initial pore pressures have been considered. Computational simulations have shown that the gaseous filler influences the mechanical behavior of cellular structure regarding the loading type, relative density and type of the base material. It was determined that the filler's temperature significantly increases due to the compressive impact loading, which might influence the macroscopic behavior of the cellular structure.
Ključne besede: mechanics, cellular structures, closed cells, gas fillers, impact loading, fluid-structure interaction, dynamic loads, LS-DYNA, ANSYS CFX 10.0, computational simulations
Objavljeno v DKUM: 31.05.2012; Ogledov: 1851; Prenosov: 37
URL Povezava na celotno besedilo

Iskanje izvedeno v 0.17 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici